Binary Input, 8-fold

User Guide

C4-KNX-8BICS
C4-KNX-8BI230V

Binary Input, 8-fold, 20 V , MDRC, Contact Scanning

Binary Input, 8-fold 230 V AC/DC, MDRC

KNX

Control 4

1. General 3
1.1. Using the product manual 3
1.1.1. Structure of the product manual 3
1.1.2. Notes 4
1.2. Product and functional overview 5
1.2.1. Short overview 5
2. Device technology 7
2.1 Binary Input, 8-fold 230 V AC/DC, MDRC 7
2.1.1. Technical data 7
2.1.2 Connection schematic C4-KNX-8BI230V 10
2.1.3. Dimensional drawing C4-KNX-8BI230V 12
2.2. Binary Input, 8-fold, 20 V, MDRC, Contact Scanning 13
2.2.1 Technical data 13
2.2.2. Connection schematic C4-KNX-8BICS 15
2.2.3. Dimensional drawing C4-KNX-8BIC 16
2.3. Assembly and installation 17
2.4. Manual operation 18
2.4.1. Display elements 19
2.4.2. Operating controls 20
$3 . \quad$ Commissioning 23
3.1. Overview 23
3.1.1 Copy and exchange parameter settings 24
3.2. Parameters 26
3.2.1. Parameter window Device information 27
3.2.2. Parameter window General 28
3.2.3. Parameter window Manual. 30
3.2.4. Parameter window Push button for manual operation 33
3.2.5. Parameter window Input LED 34
3.2.6. Communication objects General 34
3.2.7. Parameter window Enable Inputs A...X 37
3.2.8. Operating mode Switch sensor/Fault monitoring input 38
3.2.9 Operating mode Switch/Dim sensor 53
3.2.10. Operating mode Blind sensor 60
3.2.11. Operating mode Value/Forced operation 67
3.2.12. Operating mode Control scene 78
3.2.13. Operating mode Switching sequences 86
3.2.14. Operating mode Multiple operation 95
3.2.15. Operating mode Counter 102
3. Planning and application 119
4.1. Block diagram Switch sensor 119

Control4 KNX

Contents

4.2. Block diagram Switch/Dim sensor 120
4.3. Block diagram Blind sensor 121
4.4. Block diagram Blind sensor with external Blind actuator 122
4.5. Block diagram Value/Forced operation 123
4.6. Block diagram Control scene 124
4.7. Block diagram Switching sequences 125
4.8. Block diagram Multiple operation 126
4.9. Block diagram Counter 127
A. 1 Scope of delivery. CXXVIII
A. 2 Input 4 bit dimming telegram: CXXVIII
A. 3 Gray code CXXIX
A. 4 Code table Scene (8 bit) CXXX
A. 5 Ordering Information CXXXI
Notes CXXXII
A. 6CXXXIII

This manual describes the function and configuration of the Binary Input, 8 -fold models (listed below).

Binary Input, 8-fold, Contact Scanning, MDRC, SKU: C4-KNX-8BICS.
KNXPROD filename: BE/S 8.20.2.41, download: https://ctrl4.co/knx-8bics

Binary Input, 8-fold, 10-230 V AC/DC, MDRC, SKU: C4-KNX-8BI230V.
KNXPROD filename: BE/S 8.230.2.41, download: https://ctrl4.co/knx-8bi230v

Subject to change.

Exclusion of liability:

Although the contents of this document have been checked to ensure that they are consistent with the hardware and software, deviations cannot be completely excluded.
We therefore cannot accept liability. Any necessary corrections will be incorporated in new versions of the manual.

Please inform us of any suggested improvements.

Control4* KNX

General

1. General

All Control $4^{\circledR} \mathrm{KNX}$ devices are as easy and intuitive to operate as possible. Accordingly, a clear and comfortable intelligent building installation can be easily realized.

The Binary Inputs fulfil the individual needs both in functional buildings as well as in the private residential sector.

1.1. Using the product manual

This manual provides you with detailed technical information relating to the Binary Inputs, their installation and programming.
The application of the device is described using examples.
This manual is divided into the following sections:

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter A

General
Device technology
Commissioning
Planning and application
Appendix

1.1.1 \quad Structure of the product manual

All parameters are described in chapter 3.

Note

In this product manual, 8-fold Binary Inputs are described, meaning these devices each have eight binary inputs.

However, as the functions for all binary inputs are identical, only the functions of input A will be described.

Should the details in the product manual refer to all binary inputs, 8-fold corresponds to inputs $\mathrm{A} \ldots \mathrm{H}$, and the designation inputs $\mathrm{A} . . \mathrm{X}$ is used.

Control4 * KNX

General

1.1.2. Notes

Notes and safety instructions are represented as follows in this product manual:

Note

Tips for usage and operation

Examples

Application examples, installation examples, programming examples

Important

These safety instructions are used as soon as there is danger of a malfunction without risk of damage or injury.

Caution

These safety instructions are used if there is a danger of damage with inappropriate use.

Danger

These safety instructions are used if there is a danger for life and limb with inappropriate use.

4. 4 Danger

These safety instructions are used if there is a danger to life with inappropriate use.

Control4 ${ }^{\circ} \mathrm{KNX}$

Product and functional overview

1.2. Product and functional overview

The binary inputs serve as interfaces for operation of KNX systems via conventional buttons/switches or for coupling of binary signals (signal contacts).
The devices feature a push button for manual operation for each input. Input states can be simulated during manual operation, so that the conventional push buttons, switches or floating contacts do not need to be connected for commissioning purposes.

The inputs are modular installation devices with a module width of 2 and 4 space units in Pro M design for installation in a distribution board. The connection to the KNX bus is established using the front side bus connection terminal. The assignment of the physical addresses as well as the parameterization is carried out with Engineering Tool Software ETS 5.6.6 (and above).

Note

The illustrations of the parameter windows in this manual correspond to the ETS3 parameter windows. The application program is optimised for ETS 5.6.6.

The processing of the binary signals is carried out in the corresponding application program

- Binary $8 f 23021 / 1.0$, Binary $8 f 2021 / 1.0$

1.2.1. Short overview

Application possibilities	C4-KNX-8BICS (KNXPROD File Name: BE/S 8.20.2.41)	C4-KNX-8BI230V (KNXPROD File Name: BE/S 8.230.2.41)
Inputs	8	8
Switch sensor/Fault monitoring input	\square	\square
Switch/Dim sensor	\square	\square
Blind sensor	-	\square
Value/Forced operation	\square	\square
Control scene	-	\square
Switching sequences	\square	\square
Multiple operation	\square	\square
Counter	-	\square

Product and functional overview

Parameterization options	C4-KNX-8BICS (KNXPROD File Name: BE/S 8.20.2.41)	C4-KNX-8BI230V (KNXPROD File Name: BE/S 8.230.2.41)
Inputs	8	8
Switching and dimming of lighting (also for 1-button operation)	\square	\square
Operation of shutters and blinds (also for 1button operation)	\square	\square
Sending of arbitrary values, e.g. temperature values	■	■
Control and saving of light scenes	\square	\square
Operation of different consumers by repeated actuation	\square	\square
Operation of several loads in a defined switching sequence	■	\square
Counting from impulses and actuations	-	\square
Reading of floating contacts	\square	\square
Each Binary Input of a device can assume one of the functions described beforehand.	-	■

Control4 KNX

Device technology

2. Device technology

2.1. Binary Input, 8-fold 230 V AC/DC, MDRC

The Binary Input, 8 -fold 230 V AC/DC, MDRC, SKU: C4-KNX-8BI230V
 (KNXPROD File Name: BE/S 8.230.2.41) with manual operation is a rail mounted device for installation in the distribution board. The device is suitable for reading out $10 . . .230 \mathrm{~V} \mathrm{AC/DC} \mathrm{signals}$.
Buttons located on the front of the device can be used to manually simulate the input state. The status of the inputs is displayed by yellow LEDs.

The device is ready for operation after connecting the bus voltage. The Binary Input is parameterized via ETS (5.6.6 or greater). The connection to the KNX is implemented using the bus connection terminal on the front.

2.1.1. Technical data

Control4*KNX

Device technology

Supply	Bus voltage	21... 32 V DC
	Current consumption, bus	Maximum 6 mA
	Power consumption, bus	Maximum 120 mW
	Leakage loss, bus	Maximum 1.5 W at AC operation
		Maximum 3.0 W at DC operation
Inputs	Number	8 individual
	Permitted voltage range U_{n}	0... 265 V AC/DC
	Input current I_{n}	Maximum 1 mA
	Signal level for 0 signal	0... $2 \mathrm{~V} \mathrm{AC/DC}$
	Signal level for 1 signal	7... 265 V AC/DC
	Permissible cable length	Maximum 100 m at $1.5 \mathrm{~mm}^{2}$
Connections	KNX	Via bus connection terminals
	Inputs	Using universal head screw terminals (PZ 1)
Connection terminals	Screw terminal	Screw terminals with universal head (PZ 1)
		$0.2 \ldots 4 \mathrm{~mm}^{2}$ stranded, $2 \times\left(0.2 \ldots 2.5 \mathrm{~mm}^{2}\right)$
		$0.2 \ldots 6 \mathrm{~mm}^{2}$ solid, $2 \times\left(0.2 \ldots 4 \mathrm{~mm}^{2}\right)$
	Ferrules without/with plastic sleeves	Without: $0.25 \ldots 2.5 \mathrm{~mm}^{2}$
		With: $0.25 . . .4 \mathrm{~mm}^{2}$
	TWIN ferrules	0.5... $2.5 \mathrm{~mm}^{2}$
		Contact pin length at least 10 mm
	Tightening torque	Maximum 0.8 Nm
	Grid	6.35
Operating and display elements	Button/LED Programming	For assignment of the physical address
	Button (LED ${ }^{\text {\% }}$	For toggling between manual operation/operation via the KNX bus and displays
	Button ©/LED © (applies for all binary inputs, A...H)	For switching and display

Control4 KNX

Device technology

Enclosure	IP 20	To EN 60529
Safety class	II	To EN 61140
Isolation category	Overvoltage category Pollution degree	III to DIN EN 60 664-1 2 to EN 60 664-1
KNX safety extra low voltage	SELV 24 V DC	
Temperature range	Operation Storage Transport	$\begin{array}{r} -5^{\circ} \mathrm{C} \ldots+45^{\circ} \mathrm{C} \\ -25^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C} \\ -25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C} \end{array}$
Ambient conditions	Maximum air humidity	93%, no condensation allowed
Design	Modular installation device (MDRC) Dimensions Mounting width in space units Mounting depth	Modular installation device, Pro M $90 \times 72 \times 67.5 \mathrm{~mm}(\mathrm{H} \times \mathrm{W} \times \mathrm{D})$ 4 modules at 18 mm 67.5 mm
Installation	On 35 mm mounting rail	To EN 60715
Mounting position	As required	
Weight	0.2 kg	
Housing/colour	Plastic housing, grey	
Approvals	KNX to EN 50 090-1, -2	Certification
CE mark	In accordance with the EMC guideline and low voltage guideline	

Device type	Application program	Maximum number of communication objects	Maximum number of group addresses	Maximum number of associations
C4-KNX-8BI230V	Binary 8f $23021 / \ldots *$	83	254	254
KNXPROD File Name: BE/S 8.230.2.41				
* $\ldots=$ current version number of the application program				

Note

The ETS and the current version of the device application program are required for programming. (Use ETS 5.6.6 or greater).
The current version of the application program is available for download at https://ctrl4.co/knx-8bi230v (KNXPROD File Name: BE/S 8.230.2.41). After import, it is available in the ETS under Control4/Input/Binary input 8fold.
The device does not support the closing function of a KNX device in the ETS. If you inhibit access to all devices of the project with a BCU code, it has no effect on this device. Data can still be read and programmed.

Control4 KNX Device technology

2.1.2. Connection schematic C4-KNX-8BI230V

KNXPROD File Name: BE/S 8.230.2.41

Connection with AC voltage

Connection with DC voltage

1 Label carrier
3 LED Programming
5 Button Manual operation (2)
7 Connection terminals
9 Button Binary input (D)

2 Button Programming
4 Bus connection terminal
6 LED Manual operation 웅
8 LED Binary input :

Control4* KNX

Device technology

Important	Important
When connecting AC voltage, up to eight separate RCD (earth-leakage circuit breaker) circuits can be connected.	Correct polarity must be observed when the DC voltage is connected. If incorrectly connected, the input cannot be read out and processed.

Control4* KNX Device technology

2.1.3. Dimensional drawing C4-KNX-8BI230V

KNXPROD File Name: BE/S 8.230.2.41

2CDC 072196 F0009

Device technology

2.2. Binary Input, 8-fold, 20 V, MDRC, Contact Scanning

KNXPROD File Name: BE/S 8.20.2.41

Binary Input, 8-fold, Contact Scanning, MDRC C4-KNX-8BICS (KNXPROD File Name: $B E / S$ 8.20.2.41) with manual operation is a rail mounted device for installation in the distribution board. The device is suitable for reading floating contacts. The pulsed scanning voltage is generated internally.
Buttons located on the front of the device can be used to manually simulate the input state. The status of the inputs is displayed by yellow LEDs.

The device is ready for operation after connecting the bus voltage. The Binary Input is parameterized via ETS (Use ETS 5.6.6 or greater). The connection to the KNX is implemented using the bus connection terminal on the front.

2.2.1. Technical data

Supply	Bus voltage	21... 32 V DC
	Current consumption, bus	Maximum 7 mA
	Power consumption, bus	Maximum 150 mW
	Leakage loss, bus	Maximum 150 mW
Inputs	Number	8
	Scanning voltage U_{n}	35 V , pulsed
	Scanning current I_{n}	0.1 mA
	Scanning current I_{n} at switch on	Maximum 355 mA
	Permissible cable length	Maximum 100 m at $1.5 \mathrm{~mm}^{2}$
Connections	KNX	Via bus connection terminals
	Inputs	Using universal head screw terminals (PZ 1)
Connection terminals	Screw terminal	Screw terminals with universal head (PZ 1) $0.2 \ldots 4 \mathrm{~mm}^{2}$ stranded, $2 \times\left(0.2 \ldots 2.5 \mathrm{~mm}^{2}\right)$ $0.2 \ldots 6 \mathrm{~mm}^{2}$ solid, $2 \times\left(0.2 \ldots 4 \mathrm{~mm}^{2}\right)$
	Ferrules without/with plastic sleeves	Without: $0.25 \ldots 2.5 \mathrm{~mm}^{2}$ With: $0.25 \ldots 4 \mathrm{~mm}^{2}$
	TWIN ferrules	$0.5 \ldots 2.5 \mathrm{~mm}^{2}$ Contact pin length at least 10 mm
	Tightening torque	Maximum 0.8 Nm
	Grid	6.35
Operating and display elements	Button/LED Programming	For assignment of the physical address
	Button ©/LED ${ }^{\text {\% }}$	For toggling between manual operation/operation via the KNX bus and displays
	Button ©/LED © (applies for all binary inputs, A...H)	For switching and display

Control4 * KNX Device technology

Enclosure	IP 20	To EN 60529
Safety class	11	To EN 61140
Isolation category	Overvoltage category Pollution degree	III to DIN EN 60 664-1 2 to EN 60 664-1
KNX safety extra low voltage	SELV 24 V DC	
Temperature range	Operation Storage Transport	$\begin{array}{r} -5^{\circ} \mathrm{C} \ldots+45^{\circ} \mathrm{C} \\ -25^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C} \\ -25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C} \end{array}$
Ambient conditions	Maximum air humidity	93%, no condensation allowed
Design	Modular installation device (MDRC) Dimensions Mounting width in space units Mounting depth	Modular installation device, Pro M $90 \times 72 \times 67.5 \mathrm{~mm}(\mathrm{H} \times \mathrm{W} \times \mathrm{D})$ 4 modules at 18 mm 67.5 mm
Installation	On 35 mm mounting rail	To EN 60715
Mounting position	As required	
Weight	0.2 kg	
Housing/colour	Plastic housing, grey	
Approvals	KNX to EN 50 090-1, -2	Certification
CE mark	In accordance with the EMC guideline and low voltage guideline	

Device type	Application program	Maximum number of communication objects	Maximum number of group addresses	Maximum number of associations
C4-KNX-8BICS	Binary 8f 2021/...*	83	254	254
KNXPROD File Name: BE/S 8.20.2.41				
* $\ldots=$ current version number of the application program				

Note

The ETS and the current version of the device application program are required for programming. (Use ETS 5.6.6 or greater).
The current version of the application program is available for download at http://ctr14.co/knx-8bics. After import, it is available in the ETS under Control4/Input/Binary input 8 -fold.
The device does not support the closing function of a KNX device in the ETS. If you inhibit access to all devices of the project with a $B C U$ code, it has no effect on this device. Data can still be read and programmed.

2.2.2. Connection schematic C4-KNX-8BICS

KNXPROD File Name: BE/S 8.20.2.41

[^0]2 Button Programming
4 Bus connection terminal
6 LED Manual operation운
8 LED Binary input B

2.2.3. Dimensional drawing C4-KNX-8BIC

 KNXPROD File Name: BE/S 8.20.2.41

Device technology

2.3. Assembly and installation

The Binary Input is a modular installation device for fast installation in the distribution board on 35 mm mounting rails to EN 60715.
The mounting position can be selected as required.
The connection to the bus is implemented using the supplied bus connection terminal.

The device is ready for operation after connection of the bus voltage and, if required, the auxiliary voltage.

The terminal designation is located on the housing.
Accessibility to the device for the purpose of operation, testing, visual inspection, maintenance and repair must be provided compliant to VDE 0100-520.

Commissioning requirements

In order to commission the device, a PC with Engineering Tool Software (ETS) and an interface, e.g. USB or IP are required. (Use ETS 5.6.6 or greater).

The installation and commissioning may only be carried out by qualified electrical specialists. The appropriate norms, guidelines, regulations and specifications of your country should be observed when planning and setting up electrical installations.

Protect the device from damp, dirt and damage during transport, storage and operation.
Only operate the device within the specified technical data limits!
The device should only be operated in an enclosed housing (distribution board)!

The voltage supply to the device must be switched off before mounting work is performed.

Danger

In order to avoid dangerous touch voltages, which originate through feedback from differing phase conductors, all-pole disconnection must be observed when extending or modifying the electrical connections.

Supplied state

The device is supplied with the physical address 15.15.255.
The application program is pre-installed. It is therefore only necessary to load group addresses and parameters during commissioning.
However, the complete application program can be reloaded if required. The entire application program is loaded after a change of the application program, after a discontinued download or after discharge of the device. The process takes significantly longer than loading parameters and group addresses.

Device technology

Download behaviour

Depending on the PC, which is used, the progress bar for the download may take up to one and a half minutes, before it appears, due to the complexity of the device.

Assignment of the physical address

The assignment and programming of the physical address is carried out in the ETS. (Use ETS 5.6.6 or greater).

The device features a programming button for assignment of the physical device address. The red programming LED lights up, after the button has been pushed. It switches off as soon as the ETS has assigned the physical address or the programming button is pressed again.

Cleaning

If devices become dirty, they can be cleaned using a dry cloth or a cloth dampened with a soapy solution. Corrosive agents or solutions should never be used.

Maintenance

The device is maintenance-free. No repairs should be carried out by unauthorised personnel if damage occurs, e.g. during transport and/or storage.

Foil keypad

The manual pushbuttons may not be operated with pointed or sharp-edged objects, e.g. screwdrivers or pens. This may damage the keypad.

2.4. Manual operation

Function of manual operation

After connection to the bus, the device is in KNX operation. The LED 운 off. All LEDs indicate the actual input state. The respective Buttons are nonfunctional. It is possible to switch between Manual operation and KNX operation by pressing the , button.

Should Manual operation be activated, the current input states remain set. The inputs can only be operated via the foil keypad. If group addresses have been assigned, telegrams will be sent on the bus. Any signal changes from the installed system will not be considered. If Manual operation is deactivated, switchover to KNX operation and the respective LED again indicates its current input state. The communication objects are updated and telegrams are sent. The programmed input states thus set themselves.

$$
\begin{aligned}
& \text { Note } \\
& \hline \text { If button } \text { is released again before two seconds have elapsed, the LED }^{\text {reverts to its old state and there is no reaction. }} \text { If Manual operation is not enabled via the application program, there is no } \\
& \text { reaction and the device remains in the KNX operation. If it has been } \\
& \text { disabled, LED is switched on or over, after it has flashed for three } \\
& \text { seconds. }
\end{aligned}
$$

Device technology

Note

If the input is disabled and the option yes is selected with parameter Cyclic sending, the last state is still sent regardless of the block.
Using the communication object Block (No. 10), the physical input as well as the communication object Event 0/1 are disabled, but internal sending continues, i.e. the input terminals are physically disconnected from the application program.
The communication object Block (No.10) has no influence on manual operation.

2.4.1. Display elements

The indicator LEDs are located on the front of the Binary Inputs, e.g. on the C4-KNX-8BICS eight LEDs Input $X(X=A \ldots H)$, one LED Manual operation:

All Input X LEDs indicate the current input state. In KNX operation, the LED 운 is off.

The behaviour of the display elements dependent on the operating states, KNX operation and Manual operation is described in the following table:

LED	KNX operation	Manual operation
$\begin{gathered} \text { A } \\ \text { Input } A . . . X \end{gathered}$	The LED display is independent of the programming. It can be set separately for each Binary Input. - normal: Contact is closed => LED on Contact is open $\quad=>$ LED off - Block: The LED cannot be changed and remains disabled. - inverted: Contact is closed $\quad=>$ LED off In this way, the LED display can be adapted to the input state for closed and opened contacts. For fault alarms, e.g. both normally closed and normally opened contacts can be used.	The LED display is independent of the programming. It can be set separately for each Binary Input. - normal: Contact is closed => LED on Contact is open $\quad=>$ LED off - Block: The LED cannot be changed and remains disabled. - inverted: Contact is closed => LED off In this way, the LED display can be adapted to the input state for closed and opened contacts. For fault alarms, e.g. both normally closed and normally opened contacts can be used.
Manual operation	- Off: Binary Input is in KNX operation - Flashes (for about 3 seconds): Changeover to Manual operation. - Flashes continuously: Manual operation is softwareinhibited via KNX. The LED flashes until button ${ }^{\text {2 }}$ is pressed. The LED ㅇwitches off when released.	- Flashes (for about 3 seconds): Changeover to KNX operation. - On: Binary Input is in Manual operation.

Control4 * KNX

Device technology

2.4.2. Operating controls

The buttons for manual operation are located on the front of the Binary Inputs, e.g. on the C4-KNX-8BICS, eight buttons for Input $X(X=A . . H)$, one button for Manual operation:

The operating controls are enabled or disabled by button Manual operation ㅇ. The button must be pushed for at least 1.5 seconds for this purpose. This prevents unintentional actuation of the operating controls.

Switch on of manual operation:
Press button © until the yellow LED $\%$ lights continuously.
Switch off of manual operation:
Press button © until LED 운 no longer lights.

Note

Using the communication object Block, the physical input as well as the communication object Event $0 / 1$ are disabled, but internal sending continues, i.e. the input terminals are physically disconnected from the application program.

The communication object Block has no influence on manual operation. The status of the simulated input signal continues to be sent here.

Note

Manual operation can be inhibited via the KNX using communication object Enable/block manual operation. In this case, it is not possible to changeover to manual operation using button Manual operation. The block can be removed by sending a telegram with the value 0 on the communication object Enable/block manual operation. The block is also removed after a download and bus voltage recovery. The communication object again assumes the value 0 .

Control4 * KNX

Device technology

The behaviour of the operating elements dependent on the operating states, KNX operation and Manual operation, is described in the following table:

Button	KNX operation	Manual operation
Manual operation	- Long button operation (about 3 Sec.): Switch to Manual operation provided that Manual operation is not blocked by a parameter setting. - Short button push: LED 욘 Manual operation flashes and switches off again. Binary Input continues in KNX operation.	- Long button operation (about 3 Sec.): Changeover to the KNX operation. The inputs are scanned again, and the input states are updated accordingly. Reset of Manual operation to KNX operation can occur within a programmed time depending on the parameterization.
A Input A...X	No reaction	The behaviour of button Input A is dependent on the parameterization under Enable/block buttons: - Block: The binary input is disabled. - Switch: With every actuation, the states of the input and the LED are changed. - Button: Push the button Note By pressing button © , binary input A is simulated. The display A indicates the current input state. The parameterized features are executed.

Control4 *NX

 Commissioning
3. Commissioning

3.1. Overview

The application programs Binary $8 f$ 23021/1.0 and Binary $8 f$ 2021/1.0 are available for the binary inputs. Programming requires ETS. (Use ETS 5.6.6 or greater). A maximum of 10 communication objects per Binary Input, 254 group addresses and 254 associations can be linked.
The following operating modes are available for each binary input
$\left.\begin{array}{|l|l|}\hline \text { Switch sensor/Fault } & \begin{array}{l}\text { For scanning conventional inputs. } \\ \text { Distinction between short/long operation and cyclical sending of } \\ \text { the contact state is possible. } \\ \text { monitoring input } \\ \text { Blocking of a binary input is possible. } \\ \text { The operating mode can be used as fault monitoring input. } \\ \text { Up to three communication objects can be programmed differently } \\ \text { and can be sent on the KNX. }\end{array} \\ \hline \text { Switch/Dim sensor } & \begin{array}{l}\text { For control/dimming of lighting via a 1 button and } 2 \text { button } \\ \text { operation. } \\ \text { Start-stop dimming and stepwise dimming as well as switching } \\ \text { and dimming via a single push button are possible. }\end{array} \\ \hline \text { Blind sensor } & \begin{array}{l}\text { For control/slat adjustment of a blind or a shutter in 1 button } \\ \text { operation and } 2 \text { button operation. } \\ \text { Eight preset operating responses are possible in total. }\end{array} \\ \hline \text { Value/Forced } & \begin{array}{l}\text { For sending of arbitrary values of different data types, e.g. } \\ \text { temperature values. } \\ \text { It is possible to send different values or data types after a } \\ \text { short/long operation. Activation/deactivation of the forced } \\ \text { operation of actuators is also possible. }\end{array} \\ \hline \text { Counter } & \begin{array}{l}\text { For calling and storing the states of up to six actuator groups. The } \\ \text { actuator groups can be controlled via six individual } \\ \text { communication objects. }\end{array} \\ \hline \text { Control scene } & \begin{array}{l}\text { For the operation of several actuator groups in preset sequences. }\end{array} \\ \hline \text { For triggering of different functions depending on the frequency of } \\ \text { Ceration counting input pulses. } \\ \text { actuation. } \\ \text { Even a long actuation can be detected and a function triggered. } \\ \text { enables counting of daily values for example. Different count rates } \\ \text { can be set. } \\ \text { The main and differential counters can be reset. }\end{array}\right\}$

Note

Each binary input of a device can be blocked separately by a communication object.

3.1.1. Copy and exchange parameter settings

Parameterization of devices can take a lot of time depending on the complexity of the application program and the number of device inputs/outputs. To keep the commissioning work to the minimum possible, using the function Copy/Exchange channels, parameter settings of an input/output can be copied or exchanged with freely selectable inputs/outputs. Optionally, the group addresses can be retained, copied or deleted in the target input/output.

Note

When the term "channels" is used in the ETS, inputs and/or outputs are meant. In order to ensure that the ETS language generally applies for as many Control4 ${ }^{\oplus}$ KNX devices as possible, the word channels is used here.

The copy function for inputs/outputs is particularly useful with devices having the same parameter settings for several outputs, inputs or groups.

For example, lighting in a room is frequently controlled in an identical manner. In this case, the parameter settings from input/output X can be copied to all other inputs/outputs or to a special input/output of the device. Thus the parameters for this input/output must not be set separately, which significantly shortens the commissioning time.
The exchange of parameter settings is useful, e.g. should the inputs/outputs be swapped when wiring the terminals. The parameter settings of the incorrectly wired inputs/outputs can be simply exchanged saving the requirement for time-consuming rewiring.

3.1.1.1. Procedure

- Import the application program into ETS and add a product with the current application program to the project. (Use ETS 5.6.6 or greater).
- Click with the right mouse button on the product, whose inputs/outputs you wish to copy or exchange, and select the context menu Copy/Exchange channels.

Expand
Expand All
Edit Parameters...
Change Application Program...
Download...
Device Info...
Reset device...
Unload...
Delete
Unlink
Convert
CopyiExchange channels
Cut
Copy
Goto
Properties

Thereafter, undertake the required settings in the Copy/Exchange channels dialog.

3.1.1.2. Copy/Exchange channels dialog

At the top right, you will see the source channel selection window for marking the source channel. Beside is located the selection window for the target channel or channels for marking the target channel or channels.

Source channel

With the selection of the source channel, you define which parameter settings should be copied or exchanged. Only one source channel can be selected at a time.

Target channels

With the selection of the target channels, you define which channel/channels are to assume the parameter settings of the source channel.

- For the function Exchange, only one target output can be selected at a time.
- For the function Copy, different target channels can be selected simultaneously. For this purpose, press the Ctrl key and mark the required channels with the mouse cursor, e.g. channels B and C.

With this button, you select all available target channels, e.g. A...C.

Reset the selection of the target channels with this button.

Control4 KNX

Commissioning

Copy

The following options can be selected before copying the parameter settings:

- Leave the group addresses unchanged (if possible) in the target channel
- Copy group addresses
- Delete group addresses in the target channel

Copy With this button, copy the settings of the source channel into the target channel or channels.

Exchange

The following options can be selected before exchanging the parameter settings:

- Retain group addresses
- Exchange of group addresses
- Deletion of group addresses

Exchange

With this button, exchange the settings of the source channel with the target channel.

OK

Confirm your selection with this button, and the window closes.

Cancel

Using this button, the window closes without accepting the changes.

3.2. Parameters

The parameterization of the binary inputs is implemented using the Engineering Tool Software ETS. (Use ETS 5.6.6 or greater).

The current version of the application programs are available for download at https://ctrl4.co/knx-8bics and https://ctrl4.co/knx-8bi230v. After import, it is available in the ETS under Control4/Input/Binary input 8-fold.
The following chapter describes the parameters of the binary input using the parameter window. The parameter window features a dynamic structure, so that further parameters may be enabled depending on the parameterization and the function.
The default values of the parameters are underlined,
e.g.:

Options: yes
no

Note

In this product manual, 8-fold Binary Inputs are described, meaning these devices each have eight binary inputs.
However, as the functions for all binary inputs are identical, only the functions of input A will be described.

Should the details in the product manual refer to all binary inputs, 8 -fold corresponds to inputs $\mathrm{A} \ldots \mathrm{H}$, and the designation inputs $\mathrm{A} . . \mathrm{X}$ is used.

3.2.1. Parameter window Device information

This parameter window contains important information about the Binary Input (BE/S) and the respective application program.

Important

Observe the important notes in the device information.
They differ for the different device variants.
Here for example, the device information for the C4-KNX-8BICS (KNXPROD File Name: BE/S 8.20.2.41) is shown.

NOTES

The button "Standard" re-establishes

 the delivery status!<--- NOTE
The application program can be downloaded at

- https://ctr14.co/knx-8bics
<--- NOTE

3.2.2. Parameter window General

Higher level parameters can be set in the General parameter window.

Device information	General				
General					
Manual Push button for manual operation Input LED Enable Inputs A. . X	Sending delay after bus voltage recovery in ${ }^{[2} 255$	2	2		\hat{v}
	Limit number of telegrams		no		\checkmark
	Send communication object "in operation"		no		\checkmark
	Enable communication object "Request status values" 1 bit		no		\checkmark

Sending delay after bus

voltage recovery in s [2...255]
Options: $\underline{\text { 2... } 255}$
Telegrams are only received during the send delay.
However, the telegrams are not processed. No telegrams are sent on the bus.

Telegrams are sent, after the send delay has been completed.
If communication objects are read out via the bus during the send delay, e.g. from the visualisations, these requests are stored and if necessary answered, after the send delay has been completed.
An initialisation time of about two seconds is included in the delay time. The initialisation time is the reaction time that the processor requires to be functional.

How does the device behave with bus voltage recovery?
After bus voltage recovery, the device always waits for the send delay time to elapse before sending telegrams on the bus.

Limit number of telegrams

Options:

$$
\frac{\text { no }}{\text { yes }}
$$

The load on the bus generated by the device can be limited with the limitation on the number of telegrams sent. This limit relates to all telegrams sent by the device.

- yes: The following parameters appear:

Max. number of sent
 telegrams in s [1...255]

Options: 1...20... 255
in period
Options: $\quad 50 \mathrm{~ms} / 100 \mathrm{~ms} \ldots 1 \mathrm{~s} \ldots 30 \mathrm{~s} / 1 \mathrm{~min}$
These parameters determine the number of telegrams, which can be sent by the device within a period. The telegrams are sent as quickly as possible at the start of a period.

Send communication object "in operation"

Options:
no
send value 0 cyclically
send value 1 cyclically
The in operation communication object indicates the presence of the device on the bus. This cyclic telegram can be monitored by an external device. If a telegram is not received, the device may be defective or the bus cable to the transmitting device may be interrupted.

- no: The communication object In operation is not enabled.
- send value 0/1 cyclically: The communication object In Operation is sent cyclically on the KNX.
An additional parameter appears:

Sending cycle time in s [1...65,535]

Options: 1...60...65,535
Here the time interval, at which the In operation communication object cyclically sends a telegram, is set.

Note

After bus voltage recovery, the communication object sends its value after the set sending and switching delay.

Enable communication object

"Request status values" 1 bit
Options:
no
yes

- yes: A 1 bit communication object Request status values is enabled.

Via this communication object, all status messages can be requested provided that they have been parameterized with the option after a change or request.

With option yes, the following parameters appear:

Recall with object value

Options:

- 0 : Sending status messages is requested with the value 0 .
- 1: Sending status messages is requested with the value 1.
- 0 or 1: Sending of the status messages is requested with the values 0 or 1 .

3.2.3. Parameter window Manual

All the settings for manual operation are made in this parameter window.

Manual operation

Options: enable/disable via communication object enabled
disabled
This parameter defines if the switch over between the operating states Manual operation and KNX operation is enabled or disabled via the button © on the device.

- enable/disable via communication object: The communication object Enable/block manual operation (No. 2) appears.

$$
\begin{array}{ll}
\text { Telegram value } \quad \begin{array}{l}
0=\text { button } \text { \& enabled } \\
1=\text { button } \text { a disabled }
\end{array}
\end{array}
$$

Note

In manual operation, the applied input states can be overwritten.

Note

Using the communication object Block (No. 10), the physical input as well as the communication object Event 0/1 are disabled, but internal sending continues, i.e. the input terminals are physically disconnected from the application program.
The communication object Block (No.10) has no influence on manual operation.

Reset manual operation to KNX operation

Options:
no
after 1/3/10/30 minute(s)
This parameter determines how long the Binary Input remains in the Manual operation mode after pressing the a button.

- no: The Binary Input remains in Manual operation, until the button \boldsymbol{C}^{2} is pressed again.
- after X minutes: The Binary Input remains in Manual operation after the last button push, until either button © is pushed again or the programmed time has timed out.

Enable power saving mode

(LEDs in KNX mode off)
Options: no
after 1/3/10/30 minute(s)
This parameter determines whether the yellow LEDs for manual operation in KNX mode should be switched off after a parameterized time. The device and the channels are still controlled via the bus; however, the current status of the channels is not displayed via the yellow LEDs.

When any button is pressed, the power saving mode is interrupted and the status of the inputs is shown even if manual operation is inhibited. If no other button is pressed, the power saving mode is reactivated after the parameterized time and the LEDs switch off.

Note

All options to reset a device, e.g. via a download, an ETS reset or bus voltage recovery are treated with the same priority in power saving mode.

- no: LED display is activated.
- after $1 / 3 / 10 / 30$ minute(s): The power saving mode is activated after the time parameterized here. The power saving mode is interrupted with the following actions, and the status is displayed.

Control4* KNX

Commissioning

- Switch-over to KNX mode
- Interruption of power saving mode by pressing a button
- Programming, download or ETS reset

Enable communication object

"Status man. operation" 1 bit

Options: no
yes

- yes: The communication object Status man. operation (No. 3) is enabled. An additional parameter appears:

Send object value

Options: no, update only
after a change
after request
after a change or request

- no, update only: The status is updated but not sent.
- after a change: The status is sent after a change.
- after request: The status is sent after a request.
- after a change or request: The status is sent after a change or a request.

For further information see: Manual operation, page 18.

3.2.4. Parameter window Push button for manual operation

In this parameter window, the binary inputs are enabled or blocked and the configuration (switch, button) is determined.

Input A

Options:

> diasble
> switch
> push button

With this parameter, input A can be disabled or enabled as a switch or push button.

- disable: The binary input is disabled.
- switch: With every actuation, the states of the input and the LED are changed.
- push button: Press button => input closed, LED on

Release button => input opened, LED off

Note

By pressing button Θ, binary input A is simulated.
The display a indicates the current input state. The parameterized features are executed.

Input B...X

The operation of input A does not differ from the operation of inputs B...X.

3.2.5. Parameter window Input LED

The settings for the LED of the binary input can be undertaken in this parameter window.

LED input A

Options: normal disabled inverted

This parameter defines whether the LED display is normal or inverted. It is set separately for each Binary Input.

- normal: Contact is closed => signal present => LED on Contact is open $\quad=>$ no signal \quad LED off
- disabled: The LED cannot be changed and remains disabled.
- inverted: Contact is closed => signal present => LED off Contact open $\quad=>$ no signal \quad LED on

In this way, the LED display can be adapted to the input state for closed and opened contacts.
For fault alarms, e.g. both normally closed and normally opened contacts can be used.

3.2.6. Communication objects General

Number	Object Function	Name	Length	C	R	W	T

No.	Function	Object name	Data type	Flags
$\mathbf{0}$	In operation	System	$\mathbf{1}$ bit DPT 1.002	C, R, T

The communication object is enabled if the parameter Send communication object "in operation" in the parameter window General has been selected with yes.

In order to regularly monitor the presence of the device on the KNX, an in operation monitoring telegram can be sent cyclically on the bus.

As long as the communication object is activated, it sends a programmable in operation telegram.

1	Request status values	General	1 bit DPT 1.017	C, R, T

If a telegram with the value $x(x=0 / 1 / 0$ or 1$)$ is received in the communication object, all status objects are sent on the bus, as long as these have not been programmed with the option after a change or request.

The following function results for the option $x=1$:

$$
\begin{aligned}
& \text { Telegram value: } \quad \begin{aligned}
1= & \text { all status messages are sent, provided they are } \\
& \text { programmed with the option after a change or request. } \\
0= & \text { no reaction }
\end{aligned}
\end{aligned}
$$

No.	Function	Object name	Data type	Flags
$\mathbf{2}$	Enable/block manual operation	Manual operation	$\mathbf{1}$ bit DPT 1.003	$\mathbf{C , R , \mathbf { T }}$

Manual operation is enabled or disabled via this communication object.

Note

If this communication object is assigned to a group address, manual operation is disabled after each download, ETS reset or bus voltage recovery

If the value 0 is in this communication object, then the binary input can be switched to Manual operation using the button on the device.
If this communication object has a 1 , the Binary Input is in KNX operation.

Telegram value: \quad| 0 | $=$ button 2 enabled |
| ---: | :--- |
| 1 | $=$ button disabled |

Note
Using the communication object Block (No. 10), the physical input as well as the communication object Event 0/1 are disabled, but internal sending continues, i.e. the input terminals are physically disconnected from the application program.
The communication object Block (No.10) has no influence on manual operation.

3	Status man. operation	Manual operation	1 bit DPT 1.003	C, R, T

On this communication object, the binary input sends the information regarding whether it is in Manual operation or KNX operation.
The status is sent after a change
Telegram value: $\quad 0=K N X$ operation
1 = manual operation

3.2.7. Parameter window Enable Inputs A... X

In this parameter window, all the settings for Enabl Inputs A...X are undertaken.

Note

In the following, the setting possibilities of Inputs $A \ldots X$ are explained using input A as an example.

The setting possibilities are identical for all inputs.

Enable Input A

Options: no yes

- yes: An additional parameter appears:

Operating mode

Options: Switch sensor/Fault monitoring input
Switch/Dim sensor
Blind sensor Value/Forced operation
Control scene
Switching sequences
Multiple operation
Counter
The operating mode of the input is defined with this parameter. The respective parameter window A : $x x x$ also becomes visible with the selection of an operating mode.

Control4*KNX

Commissioning

Designation

(40 characters)
Options: -- TEXT --
With this parameter, it is possible to enter a text of up to 40 characters in length for identification in the ETS. (Use ETS 5.6.6 or greater).

Note

This entered text is used to assist in providing a quick and simple overview of the assignment and function of the inputs.
The text is purely for informative purposes and has no further function.

Inputs B...X

Note

The parameter descriptions should be taken from the description of input A!

3.2.8. Operating mode Switch sensor/Fault monitoring input
 In this chapter, you will find all descriptions for the parameter windows and the corresponding communication objects for operating mode Switch sensor/Fault monitoring input.

Note

The inputs $B . . . X$ do not differ from input A.
The descriptions of the parameter setting possibilities and the adjustable communication objects for the inputs $B . . . X$ should be taken from the descriptions from parameter window Enable Inputs A...X, page 35.

3.2.8.1. Parameter window A: Switch sensor

In this parameter window, all settings are undertaken for parameter window A: Switch sensor. The explanations also apply for the Inputs B...X.
This parameter window is visible if in parameter window Enable Inputs $A \ldots X$, page 35, the option Switch sensor/Fault monitoring input has been selected in parameter Input A.

Enable communication object

"Disable" 1 bit
Options: no
yes

- yes: The 1 bit Block communication object is enabled.

The input can be enabled or disabled.

Note

If the input is disabled and the option yes is selected with parameter Cyclic sending, the last state is still sent regardless of the block.
Using the communication object Block (No. 10), the physical input as well as the communication object Event $0 / 1$ are disabled, but internal sending continues, i.e. the input terminals are physically disconnected from the application program.
The communication object Block (No.10) has no influence on manual operation.

Enable communication object
 "Event 0/1 started" 1 bit

Options:
no
yes

- yes: The 1 bit communication object Event $0 / 1$ started is enabled.

As a result, the same events, such as those of the push button/switch connected to the binary input, can also be triggered by the receipt of a telegram on the communication object Event 0/1 started. A set Minimum signal time or Distinction between short and long operation is not taken into consideration, i.e. the event is implemented immediately. Also refer to the block diagram Switch sensor, page 119.

Note

If the input is disabled and the option yes is selected with parameter Cyclic sending, the last state is still sent regardless of the block.
Using the communication object Block (No. 10), the physical input as well as the communication object Event $0 / 1$ are disabled, but internal sending continues, i.e. the input terminals are physically disconnected from the application program.
The communication object Block (No.10) has no influence on manual operation.

Capacitive screening

Options: up to 10 nF (standard)
up to 20 nF
up to 30 nF
up to 40 nF
This parameter defines the degree of capacitive screening.
Transmission errors can occur on extended cable lengths under certain conditions, e.g. in a $5 \times 1.5 \mathrm{~mm}^{2}$ cable, where two conductors are used as a signal line and one conductor is used for switching loads, it may result in mutual interference. If this proves to be the case in an installation, the sensitivity of the input is increased. It should be noted that the signal evaluation also slows down.

Debounce time

Options: $\quad 10 / 20 / 30 / \underline{50} / 70 / 100 / 150 \mathrm{~ms}$
Debouncing prevents unwanted multiple operations of the input, e.g. due to bouncing of the contact.

What is the debounce time?

If an edge is detected at an input, the input will react immediately to this edge, e.g. by sending a telegram. At the same time, the duration of the debounce time T_{D} starts. The signal on the input is not evaluated within the debounce time duration.

Example: Debounce time of the input signal for a detected edge:

After detection of an edge on the input, further edges are ignored for the debounce time T_{D}.

Distinction between short and long operation

Options: yes
no
Using this parameter, you set if the input differentiates between short and long operation.

- yes: After opening/closing of the contact, first of all it is necessary to ascertain whether a short or long operation has occurred here. Only thereafter will a possible reaction be triggered.

The following drawing shows the function in detail:

T_{L} is the time duration from where a long operation is detected.
3.2.8.1.1. Parameter Distinction between short and long operation - no

If the option no is selected with the parameter Distinction between short and long operation, the following parameters in the parameter window A: Switch sensor, page 36, are visible.

Opening the contacts => Event 0

Closing the contacts => Event 1
<--- NOTE
Activate minimum signal time
Options: no
yes

- yes: The following parameters appear:

On closing the contact in value $x 0.1 \mathrm{~s}[0 . . .65,535]$
Options: 1...10...65.535
On opening the contact in value $x 0.1 \mathrm{~s}[0 . . .65,535]$
Options: 1...10...65.535

What is the minimum signal time?
In contrast to the debounce time, a telegram is only sent, after the minimum signal duration has elapsed.
The individual functions are:
If an edge is detected on the input, the minimum signal duration will commence. No telegram is sent on the bus at this time. The signal on the input is observed within the minimum signal duration. If a further edge appears at the input during the minimum signal duration, it will be interpreted as a new operation, and the minimum signal duration restarts.
If no further edges occur after the start of the minimum signal duration, a telegram is sent on the bus, after the minimum signal duration has timed out.

Example: Minimum signal time of the input signal for a detected edge:

In only two cases, no further edge changes occur within the minimum signal duration T_{m} after a change of edge. For this reason, only both of these are detected as valid.

Scan input after download, ETS reset and bus voltage recovery

Options: no yes

- yes: The value of the communication object is scanned after a download, ETS reset and bus voltage recovery.
- no: The value of the communication object is not scanned after a download, ETS reset and bus voltage recovery.
With option yes, the following additional parameters appear in the parameter:

Inactive wait state after bus
 voltage recovery in s [0...30,000]

Options: $\quad \underline{0} . .30,000$
Here the waiting time after a bus voltage recovery is set. After the waiting time has elapsed, the state on the input terminals is scanned. The input reacts as if the state on the input terminals has just changed.

Note

The inactive waiting time does not add to the actual, adjustable send delay time. This can be set separately.

Communication object "Switch 1"

(cyclic sending possible)

Options: no
yes

- yes: The communication object Switch 1 appears. In addition, the following parameters appear:

Reaction with event 0

Options: ON
OFF
TOGGLE
no reaction
terminate cyclic sending

Reaction with event 1

Options:
ON
OFF
TOGGLE
no reaction
terminate cyclic sending
The behaviour of the communication object is determined here. If the option yes has been selected with the parameter Distinction between short and long operation, the reaction occurs with a short or long operation. With the option no it occurs with each edge change.
Important
If the option terminate cyclic sending is set, it is important to note
that this is only effective if the option yes has only been selected in
the following Cyclic sending parameter.

Cyclic sending

Options: no

What is cyclic sending?

Cyclic sending enables the communication object Switch to send automatically at a fixed interval. If cyclic sending is only carried out for a specific communication object value (ON or OFF), this condition refers to the value of the communication object. It is therefore possible in principle to start cyclic sending by sending a value to the communication object Switch. As this behaviour is unwanted, the flags Write and Update of the communication object are deleted in the preliminary setting, so that they cannot be changed via the bus. If this functionality is still required however, these flags should be set accordingly. When the communication object Switch changes and after bus recovery (after the send delay time has elapsed), the communication object value is sent immediately on the bus, and the sending cycle time restarts.

- yes: Other parameters appear:

Telegram is repeated every
in s [1...65,535]
Options: 1...60...65,535
This parameter determines the time intervals, at which telegrams are repeated.

on object value

Options: 0
1
0 or 1

- $0:$ Cyclic sending is requested with the value 0.
- 1: Cyclic sending is requested with the value 1.
- 0 or 1 : Cyclic sending is requested with the values 0 or 1 .

Communication object "Switch 2"

Communication object "Switch 3"

Options: no
yes

- yes: The communication object Switch 2 becomes visible. Additional parameters appear:

Reaction with event 0

Options: ON
OFF
TOGGLE
no reaction
Reaction with event 1
Options:
ON
OFF
TOGGLE
no reaction
The behaviour of the communication object is determined here. If the option yes has been selected with the parameter Distinction between short and long operation, the reaction occurs with a short or long operation. With the option no it occurs with each edge change.
3.2.8.1.2. Parameter Distinction between short and long operation - yes

If the option yes is selected with the parameter Distinction between short and long operation, the following parameters in the parameter window A: Switch sensor, page 36 , are visible.

[^1]
Connected contact type

Options: $\quad \underline{\text { closed }}$
open

- closed: The input is closed with actuation.
- open: The input is opened with actuation.

If a normally open contact is connected to the input, the option closed should be selected; on a normally closed contact, the option open should be selected.

Control4 KNX

Commissioning

Long operation after ...

Options: $\quad 0.3 / 0.4 / 0.5 / \underline{0.6} / 0.8 \mathrm{~s}$
1/1.2/1.5 s
2/3/4/5/6/7/8/9/10 s
Here the time period T_{L}, after which an actuation is considered a "long" operation, is defined.

Note

The remaining parameter descriptions can be found in the parameter Distinction between short and long operation - no, page 39.

3.2.8.1.3. Special function Fault monitoring input

Note
For the operating mode Fault monitoring input the, options must be
adapted in comparison to the standard settings.
The options for Fault monitoring input are listed separately in the following.
In this chapter, only the parameters, which are relevant for optimum Fault
monitoring input performance, are listed.
All descriptions of the parameter should be taken from parameter window
A: Switch sensor, page 36 .

Debounce time

Options:
10/20/30/50/70/100/150 ms

Distinction between short and long operation

Options:
yes/no

Fault monitoring option:
50 ms

Fault monitoring option:
no

Activate minimum signal time

Options: yes/no

On closing the contact in value $\times 0.1 \mathrm{~s}[1 . . .65,535]$
Options:
1...10...65,535

On opening the contact in value $\times 0.1 \mathrm{~s}[1 . . .65,535]$
Options:
1...10...65,535

Fault monitoring option:
yes

Fault monitoring option: 2

Fault monitoring option:
2

Note

Depending on the system type, a minimum signal duration setting of, e.g. two seconds is recommended. With the evaluation for example of coupling switches, generator switches or incoming circuit-breakers from switchgear systems, a smaller minimum signal time of 100 ms , for example, may be necessary.
It is essential to co-ordinate the switching times with the operator! Smaller signal/switch times may be required depending on the system.

Scan input after download, ETS reset and bus voltage recovery

Options:
yes/no

Fault monitoring option:
yes

Inactive wait state after bus
voltage recovery in s [$0 . . .30,000$]
Options:
Fault monitoring option:
0...30,000

0

Communication object "Switch 1"

(cyclic sending possible)

Options:
no
yes

Reaction with event 0

Options:
ON
OFF
TOGGLE
no reaction
terminate cyclic sending

Reaction with event 1

Options:
ON
OFF
TOGGLE
no reaction
terminate cyclic sending
Cyclic sending
Options: Fault monitoring option:
yes/no
on object value
Options:
O
1
0 or 1
Telegram is repeated every
in s [1...65,535]
Options: Fault monitoring option:
1...60...65,535

Fault monitoring option:
yes

Fault monitoring option:
partly adjustable

Fault monitoring option:
partly adjustable
yes

Fault monitoring option:
0 or 1

30

Communication object "Switch 2" Communication object "Switch 3"

Options:
Fault monitoring option:
no no
yes

Note

Fault messages are generally passed onto the main bus. With 500 fault messages, the option 30 s means that every 60 ms a telegram is sent on the main line. For this reason, it is essential to ensure that the send delay time is set, so that no telegram is lost if the bus voltage fails.

3.2.8.2. Communication objects Switch sensor

The communication objects of all Inputs do not differentiate from one another and are explained using Input A. The descriptions of the parameter setting options of Inputs $A . . . X$ are described from parameter window Enable Inputs A...X, page 35.
The communication objects Input A have the nos. 10... 19 .
The communication objects Input B have the nos. 20... 29 .
The communication objects Input C have the nos. 30... 39 .
The communication objects Input D have the nos. 40... 49 .
The communication objects Input E have the nos. 50...59.
The communication objects Input F have the nos. 60...69.
The communication objects Input G have the nos. 70...79.
The communication objects Input H have the nos. 80... 89 .

Number	Object Function	Name	Length	C	R	W	T	U
[$\vec{l}_{1} 10$	Block	Input A:	1 bit	C	-	W	-	-
- ${ }_{\text {A }} 11$	Switch 1	Input A: Switch sensor	1 bit	C	-	W	T	-
或12	Switch 2	Input A: Switch sensor	1 bit	C	-	W	T	-
[${ }^{\text {d }} 13$	Switch 3	Input A: Switch sensor	1 bit	C	-	w	T	-
- $\vec{\square}_{1} 14$	Event 0/1 started	Input A: Switch sensor	1 bit	C	-	w	-	-

No.	Function	Object name	Data type	Flags
$\mathbf{1 0}$	Block	Input A	1 bit DPT 1.003	C, W

This communication object is enabled if in parameter window A: Switch sensor the parameter Enable communication object "Disable" 1 bit has been selected with option yes. Using the communication object Block, the input as well as the communication object Event $0 / 1$ can be disabled or enabled. With activated communication object Block, the inputs are disabled.

Note

| When the input is disabled, there is fundamentally no reaction to a signal
 change on the input, but:
 -
 Waiting for a long button operation or a minimum signal
 time is suspended.
 - Parameterized Cyclic sending is not interrupted.
 - The description of the communication object Switch x is still
 possible.
 If the input state changes during the blocked phase, this leads to immediate
 sending of the new communication object value after enabling. If the input
 state remains the same during the blocking phase, the communication object
 value is not sent.
 The communication object Block has no influence on manual operation. The
 status of the simulated input signal continues to be sent here.
 Telegram value: enable input A
 $1=$ disable input A |
| :--- | :--- |

No.	Function	Object name	Data type	Flags
$\mathbf{1 1}$	Switch 1	Input A: Switch sensor	1 bit DPT 1.001	C, W, T

This communication object is enabled if in the parameter window Enable Inputs $A . . . X$, the parameter Input A has been selected with the option Switch sensor/Fault monitoring input. In accordance with the parameter setting, this communication object can be switched by actuation of the input to ON, OFF or TOGGLE.
With toggle the previous value, e.g. 1 , is toggled directly to the value 0 .
The communication object can be sent cyclically, e.g. for life sign monitoring of the sensor.

Note
The communication object can be written to externally. Thus cyclic sending is interrupted or may not even be possible depending on the parameter setting. No further communication objects are visible with the setting.

Telegram value:		$\begin{aligned} & 0=O F F \\ & 1=O N \end{aligned}$		
12	Switch 2			
See communication object 11.				
13	Switch 3			
See communication object 11.				
14	Event 0/1 started	Input A: Switch sensor	1 bit DPT 1.001	C, W
This communication object is enabled if in parameter window A : Switch sensor the parameter Enable communication object "Event 0/1 started" 1 bit has been selected with option yes. The 1 bit communication object Event $0 / 1$ started is enabled. As a result, the same events except those of the push button/switch connected to the binary input can also be triggered by the receipt of a telegram on the communication object Event 0/1 started. Telegram value: $\begin{aligned} & 0=\text { start event } 0 \\ & 1=\text { start event } 1 \end{aligned}$				
$\begin{aligned} & 15 . \\ & 19 \end{aligned}$				

3.2.9. Operating mode Switch/Dim sensor

This operating mode allows the operation of dimmable lighting.
In this chapter, you will find all descriptions for the parameter windows and the corresponding communication objects for operating mode Switch/Dim sensor.

Note

Control4 KNX

Commissioning

The inputs $B \ldots X$ do not differ from input A.
The descriptions of the parameter setting possibilities and the adjustable communication objects for the inputs $B \ldots . X$ should be taken from the descriptions from parameter window Enable Inputs A...X, page 35.

3.2.9.1. Parameter window A: Switch/Dim sensor

In this parameter window, all settings are undertaken for parameter window A: Switch/Dim sensor. The explanations also apply for the Inputs $B \ldots . X$.

This parameter window is visible if in parameter window Enabe Inputs $A \ldots X$, page 35, the option Switch/Dim sensor has been selected in parameter Input A.

Enable communication object

"Disable" 1 bit
Options: no
yes

- yes: The 1 bit Block communication object is enabled.

This can be used to block the input.

Note

If the input is disabled and the option yes is selected with parameter Cyclic sending, the last state is still sent regardless of the block.
Using the communication object Block (No. 10), the physical input can be disabled, but internal sending continues, i.e. the input terminals are physically disconnected from the application program.
The communication object Block (No.10) has no influence on manual operation.

Capacitive screening

Options: \quad	up to 10 nF (standard)
	up to 20 nF
	up to 30 nF
	up to 40 nF

This parameter defines the degree of capacitive screening.
Transmission errors can occur on extended cable lengths under certain conditions, e.g. in a $5 \times 1.5 \mathrm{~mm}^{2}$ cable, where two conductors are used as a signal line and one conductor is used for switching loads, it may result in mutual interference. If this proves to be the case in an installation, the sensitivity of the input is increased. It should be noted that the signal evaluation also slows down.

Debounce time

Options: $\quad 10 / 20 / 30 / \underline{50} / 70 / 100 / 150 \mathrm{~ms}$
Debouncing prevents unwanted multiple operations of the input, e.g. due to bouncing of the contact.

What is the debounce time?

If an edge is detected at an input, the input will react immediately to this edge, e.g. by sending a telegram. At the same time, the duration of the debounce time T_{D} starts. The signal on the input is not evaluated within the debounce time duration.

The following example clarifies this:

After detection of an edge on the input, further edges are ignored for the debounce time TD.

Connected contact type

Options: closed
open

- closed: The input is closed with actuation.
- open: The input is opened with actuation.

Function Dimming

Options: Dimming and switching
 Only dimming

With this parameter, you define if the lighting can only be dimmed (Only dimming) or if additional switching is also permitted (Dimming and switching). In this case, a long button push dims and a short button push switches.

How does 1 button dimming function?

Switch and dim functions can be controlled completely using a single push button. With each long operation, alternate BRIGHTER or DARKER dimming occurs, or with short operation alternate switch on or off occurs.

If the communication object Switch $=0$, a BRIGHTER telegram is sent at all times. In order to evaluate the switch feedback of the actuator, the write flag of the communication object Switch is set.
The following table shows the function in detail:

Value of the communication object Switch	Value of the last dimming telegram	Reaction to dimming actuation (sent dimming telegram)
OFF	DARKER	BRIGHTER
OFF	BRIGHTER	BRIGHTER
ON	DARKER	BRIGHTER
ON	BRIGHTER	DARKER

The advantage of the Only dimming function is that no distinction is made between short and long actuation. The dimming telegram is initiated immediately after actuation in this way. It is not necessary to wait for a long operation.

How does 2 button dimming function?

If 2 button dimming is required, the functions of the individual buttons should be set with the parameters Reaction on short operation or Reaction on long operation, e.g. ON or BRIGHTER.
The user thus has the choice of the buttons to be combined with one another, e.g. to dim a lighting group or the function that the individual buttons should perform in this case.

Furthermore, two inputs are required for 2 button dimming, e.g. Input A with short operation for switch ON and long operation for BRIGHTER dimming. Input B with short operation for switch OFF and long operation for DARKER dimming.

If the option Dimming and switching is selected with the parameter Function Dimming, the parameters Long operation after..., On short operation: switch and On long operation: dimming direction in parameter window A: Switch/Dim sensor are visible.

Long operation after ...

```
Options: \(\quad 0.3 / 0.4 / 0.5 / \underline{0} 6 / 0.8 / 1 / 1.2 / 1.5 / 2 / 3 / 4 / 5 / 6 / 7 / 8 / 9 / 10 \mathrm{~s}\)
```

Here the time period T_{L}, after which an actuation is considered a "long" operation, is defined.

On short operation: switch

Options: ON
OFF
TOGGLE
no reaction
This parameter defines if the communication object Telegram switch TOGGLEs with short operation (typical: 1 button dimming) or only switches OFF or ON (typically: 2 button dimming).

- TOGGLE: A short operation changes the value of the communication object Telegram switch.
- ON: On short operation the value 1 is sent.
- OFF: On short operation the value 0 is sent.

On long operation: dimming direction
Options: BRIGHTER
DARKER
alternating
alternating, BRIGHTER after switching ON
alternating, DARKER after switching ON:
With this parameter, you set what the communication object Dimming should send on the bus with a long operation.
A long operation changes the value of the communication object Telegram Dimming.
With 1 button dimming the parameter alternating should be set for Dimming here. In this case, the dimming telegram, which is diametrically opposed to the last dimming telegram, is sent.

- BRIGHTER: The communication object sends a BRIGHTER telegram.
- DARKER: The communication object sends a DARKER telegram.
- alternating: The communication object alternately sends a BRIGHTER and a DARKER telegram.
- alternating, BRIGHTER after switching ON The communication object at the first time sends a BRIGHTER telegram after an ON telegram; thereafter, it alternately sends BRIGHTER and DARKER telegrams.
- alternating, DARKER after switching ON: The communication object at the first time sends a DARKER telegram after an ON telegram, thereafter, it alternately sends BRIGHTER and DARKER telegrams.

```
Note
If the option Only dimming is selected in the Function Dimming, only the parameter On operation: dimming direction is visible.
```


Dimming mode

Options: START/STOP dimming:
Dimming steps

- START/STOP dimming: The dimming process starts with a telegram BRIGHTER or DARKER and ends with a STOP telegram.

4 bit dimming telegram:

Decimal	Hexadecimal	Binary	Dimming telegram
0	0	0000	STOP
1	1	0001	100% DARKER
8	8	1000	STOP
9	9	1001	100% BRIGHTER

For further information see: Input 4 bit dimming telegram, page CXXVIII

- Dimming steps: Dimming telegrams are sent cyclically during a long operation. Cyclic sending is terminated after the end of actuation.

Both of the next parameters only appear if in the parameter Dimming mode the option Dimming steps has been set.

Brightness change on every sent telegram

Options: $\quad 100 / 50 / 25 / 12.5 / 6.25 / 3.13 / 1.56 \%$
Using this parameter, you set the brightness change in percent, which is cyclically sent with every dim telegram.

Telegram is repeated every

in s
Options: $\quad 0.3 / 0.4 / 0.5 / \underline{0.6} / 0.8 / 1 / 1.2 / 1.5 / 2 / 3 / 4 / 5 / 6 / 7 / 8 / 9 / 10 \mathrm{~s}$
This parameter determines the time intervals, at which telegrams are repeated.

Caution

With dimming steps, ensure that the set time duration for telegram repetition is matched on the dimming actuator to facilitate a smooth dimming process.
Should the input be disabled during the dimming step, the dimming telegrams will continue to run until the end of the blocking period.

Control4* KNX

 Commissioning
3.2.9.2. Operating mode Switch/Dim sensor

The communication objects of all Inputs do not differentiate from one another and are explained using Input A. The descriptions of the parameter setting options of Inputs $A \ldots X$ are described from parameter window Enable Inputs $A \ldots X$, page 35.
The communication objects Input A have the nos. 10... 19 .
The communication objects Input B have the nos. 20... 29 .
The communication objects Input C have the nos. 30... 39 .
The communication objects Input D have the nos. 40... 49 .
The communication objects Input E have the nos. 50...59.
The communication objects Input F have the nos. 60... 69 .
The communication objects Input G have the nos. 70...79.
The communication objects Input H have the nos. 80... 89 .

Number	Object Function	Name	Length	C	R	W

No.	Function	Object name	Data type	Flags
$\mathbf{1 0}$	Block	Input A:	1 bit DPT 1.003	C, w

This communication object is enabled if in parameter window A : Switch/Dim sensor the parameter Enable communication object "Disable" 1 bit has been selected with option yes. Using the communication object Block, the input can be disabled or enabled. With activated communication object Block, the inputs are disabled.

Note

When the input is disabled, there is fundamentally no reaction to a signal change on the input, but:

- Waiting for a long button operation or a minimum signal time is suspended.
- Parameterized Cyclic sending is interrupted with dimming steps.
- Writing to communication object Switch is still possible.

When enabling an input, a change of the signal states (as opposed to before the block) leads to immediate processing, e.g.:

- The minimum actuation or detection of a long/short button push starts.
- Communication objects send their value if necessary.

The communication object Block has no influence on manual operation. The status of the simulated input signal continues to be sent here.

```
Telegram value: }0=\mathrm{ enable input A
    1 = disable input A
```


Control4 KNX

Commissioning

No.	Function	Object name	Data type	Flags
$\mathbf{1 1}$	Switch	Input A: Switch/Dim sensor	$\mathbf{1}$ bit DPT 1.001	C, W, T

This communication object is enabled if in the parameter window Enable Inputs A... X, the parameter Input A has been selected with the option Switch/Dim sensor.In accordance with the parameter setting, this communication object can be switched by actuation of the input to ON, OFF or TOGGLE.
With toggle the previous value, e.g. 1 , is toggled directly to the value 0 .
With parameter setting TOGGLE, the communication object as the non-sending group address should be linked with the switch feedback of the dimming actuator (updating of the switching state).

Note

The communication object can be written to externally. Thus cyclic sending is interrupted or may not even be possible depending on the parameter setting.
No further communication objects are visible with the setting.

Telegram value:			$0=$ OFF $1=O N$	
$\mathbf{1 2}$	Dimming	Input A: Switch/Dim sensor	$\mathbf{4}$ bit DPT 3.007	C, T

This communication object is enabled if in the parameter window Enable Inputs $A . . . X$, the parameter Input A has been selected with the option Switch/Dim sensor.

A long operation at the input has the effect that BRIGHTER or DARKER dim telegrams are sent via this communication object on the bus. A STOP telegram is sent and the cyclic sending of dim telegrams is stopped at the end of actuation with START-STOP-DIMMING.

$13 \ldots$ 19				

Not assigned in this operating mode.

3.2.10. Operating mode Blind sensor

This operating mode allows the operation of blinds and roller shutters with buttons or switches.

In this chapter, you will find all descriptions for the parameter windows and the corresponding communication objects for operating mode Blind sensor.

Note

The inputs $B . . . X$ do not differ from input A.
The descriptions of the parameter setting possibilities and the adjustable communication objects for the inputs $B . . . X$ should be taken from the descriptions from parameter window Enable Inputs A...X, page 35.

3.2.10.1. Parameter window A: Blind sensor

In this parameter window, all settings are undertaken for parameter window A: Blind sensor. The explanations also apply for the Inputs B...X.

This parameter window is visible if in parameter window Enable Inputs $A \ldots X$, page 35, the option Blind sensor has been selected in parameter Input A.

Enable communication object "Disable" 1 bit

Options: no

 yes- yes: The 1 bit Block communication object is enabled.

This can be used to block the input.

Note

If the input is disabled and the option yes is selected with parameter Cyclic sending, the last state is still sent regardless of the block.

Using the communication object Block (No. 10), the physical input can be disabled, but internal sending continues, i.e. the input terminals are physically disconnected from the application program.

The communication object Block (No. 10) has no influence on manual operation.

Capacitive screening

Options: up to 10 nF (standard)
up to 20 nF
up to 30 nF
up to 40 nF
This parameter defines the degree of capacitive screening.
Transmission errors can occur on extended cable lengths under certain conditions, e.g. in a $5 \times 1.5 \mathrm{~mm}^{2}$ cable, where two conductors are used as a signal line and one conductor is used for switching loads, it may result in mutual interference. If this proves to be the case in an installation, the sensitivity of the input is increased. It should be noted that the signal evaluation also slows down.

Debounce time

Options: $\quad 10 / 20 / 30 / \underline{50} / 70 / 100 / 150 \mathrm{~ms}$
Debouncing prevents unwanted multiple operations of the input, e.g. due to bouncing of the contact.

What is the debounce time?

If an edge is detected at an input, the input will react immediately to this edge, e.g. by sending a telegram. At the same time, the duration of the debounce time T_{D} starts. The signal on the input is not evaluated within the debounce time duration.

The following example clarifies this:

After detection of an edge on the input, further edges are ignored for the debounce time T_{D}.

Connected contact type

Options: closed
open

- closed: The input is closed with actuation.
- open: The input is opened with actuation.

Operating functionality of the Blind

Options: $\quad 1$ push buttons op. (short = Stepwise, long = Move)
1 push button op. (short = Move, long = Stepwise)
1 push button operation (Move only - STOP)
1 switch operation (Move only)
2 push buttons op. (short = Stepwise, long = Move)
2 switches/push buttons operation (Move only)
2 push buttons operation (Move only)
2 push buttons operation (only Slat)
The following table provides an overview of the different blind operating modes:

1 push buttons op. (short = Stepwise, long = Move)					
Short operation	STOP/stepwise Opposite direction to the last movement telegram* To return to slat adjustment, the blind must be moved UP or DOWN briefly.				
Long operation	Move UP or Move DOWN				
1 push button op. (short = Move, long = Stepwise)		$	$	Short operation	Move UP or Move DOWN
:---	:---				
Long operation	STOP/stepwise (Cyclic sending); Opposite direction to the last movement telegram				
$\mathbf{1}$ push button operation (Move only - STOP)					
On operation	The following telegrams are sent in sequence:				
Move DOWN					
1 switch operation (Move only)					

* If the actuator indicates the limit position, in 1 button operation the communication object Blind UP/DOWN can be synchronized. If the actuator is in a limit position (see communication object Upper limit position or Lower limit position), the direction of movement is predefined. In 1 push button/switch operation, the last direction of movement is determined via the last update of the object Blind UP/DOWN.

Depending on the selection made in the parameter Operating functionality of the Blind, different parameters will appear.

All parameters are described in the following:

Long operation after ...

Options: $\quad 0.3 / 0.4 / 0.5 / \underline{0.6} / 0.8 / 1 / 1.2 / 1.5 / 2 / 3 / 4 / 5 / 6 / 7 / 8 / 9 / 10 \mathrm{~s}$
Here the time period T_{L}, after which an actuation is considered a "long" operation, is defined.

Telegram "Slat" is repeated every

Options: $\quad 0.3 / 0.4 / \underline{0.5} / 0.6 / 0.8 / 1 / 1.2 / 1,5 / 2 / 3 / 4 / 5 / 6 / 7 / 8 / 9 / 10 \mathrm{~s}$
The time duration, at which the Slat telegram is to be repeated, is defined here.

Reaction on short operation
Options: STOP/Slat UP
STOP/Slat DOWN

Reaction on long operation

Options: Move UP
Move DOWN
It can be set whether the input triggers telegrams for movement upwards (UP) or downwards (DOWN).

Reaction on operation

Options: Move UP
Move DOWN
You can set whether the input triggers telegrams for movement upwards (Move UP) or downwards (Move DOWN).
3.2.10.2. Communication objects Blind sensor

The communication objects of all Inputs do not differentiate from one another and are explained using Input A. The descriptions of the parameter setting options of Inputs $A \ldots X$ are described from parameter window Enable Inputs A...X, page 35.

The communication objects Input A have the nos. 10... 19.
The communication objects Input B have the nos. 20... 29 .
The communication objects Input C have the nos. 30... 39 .
The communication objects Input D have the nos. 40...49.
The communication objects Input E have the nos. 50...59.
The communication objects Input F have the nos. 60...69.
The communication objects Input G have the nos. 70...79.
The communication objects Input H have the nos. 80... 89 .

| Number | Object Function | Name | Length | C | R | W | T |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | U

No.	Function	Object name	Data type	Flags
$\mathbf{1 0}$	Block	Input A:	1 bit DPT 1.003	C, W

This communication object is enabled if in parameter window A: Blind sensor the parameter Enable communication object "Disable" 1 bit has been selected with option yes. Using the communication object Block, the input can be disabled or enabled. With activated communication object Block, the inputs are disabled.

Note

When the input is disabled, there is fundamentally no reaction to a signal change, but:

- Waiting for a long button operation or a minimum signal time is suspended.
- Parameterized Cyclic sending is interrupted.
- Communication objects continue to be updated and sent if necessary.

When enabling an input, a change of the signal states (as opposed to before the block) leads to immediate processing, e.g.:

- The minimum actuation or detection of a long/short button push starts.
- Communication objects send their current value if necessary.

The communication object Block has no influence on manual operation. The status of the simulated input signal continues to be sent here.

Telegram value: \quad| $0=$ enable input A | |
| :--- | :--- |
| 1 | $=$ disable input A |

No.	Function	Object name	Data type	Flags
$\mathbf{1 1}$	Blind UP/DOWN	Input A: Blind sensor	1 bit DPT 1.008	C, W, T

This communication object is enabled if in the parameter window Enable Inputs $A \ldots X$, the parameter Input A has been selected with the option Blind sensor.

This communication object sends a blind motion telegram UP or DOWN on the bus.
By receiving telegrams, the device also recognises movement telegrams of another sensor, e.g. parallel operation.

$$
\begin{array}{ll}
\text { Telegram value: } & 0=\mathrm{UP} \\
& 1=\mathrm{DOWN}
\end{array}
$$

12	STOP/Slat adjustment	Input A: Blind sensor	1 bit DPT 1.007	C, T

This communication object is enabled if in the parameter window Enable Inputs $A . . . X$, the parameter Input A has been selected with the option Blind sensor.

This communication object sends a STOP telegram or slat adjustment.

$$
\begin{array}{ll}
\text { Telegram value: } & 0=\text { STOP/Slat adjustment } \\
1=\text { STOP/Slat adjustment DOWN }
\end{array}
$$

13	Upper limit position	Input A: Blind sensor	EIS1, 1 bit DTP 1.002	C, w

This communication object is enabled if in the parameter window Enable Inputs A...X, the parameter Input A has been selected with the option Blind sensor.

With this communication object, the feedback of a blind actuator, which indicates whether the blind is located in the upper end position, can be integrated.

Note

The communication object is important for 1-button operation (synchronisation).

Telegram value: \quad| $0=$ blind is not in upper end position. |
| :--- |
| $1=$ blind has reached the upper end position. |

14	Lower limit position	Input A: Blind sensor	EIS1, 1 bit DTP 1.002	C, w

This communication object is enabled if in the parameter window Enable Inputs A...X, the parameter Input A has been selected with the option Blind sensor.
With this communication object, the feedback of a blind actuator, which indicates whether the blind is located in the lower end position, can be integrated.

Note
The communication object is important for 1-button operation (synchronisation).

$$
\text { Telegram value: } \quad \begin{aligned}
& 0=\text { blind is not in lower end position. } \\
& 1=\text { blind has reached the lower end position. }
\end{aligned}
$$

No.	Function	Object name	Data type	Flags
$15 \ldots$ 19				
Not assigned in this operating mode.				

3.2.11. Operating mode Value/Forced operation

This operating mode allows the sending of values of any data types.
In this chapter, you will find all descriptions for the parameter windows and the corresponding communication objects for operating mode Value/Forced operation.

Note

The inputs $B . . . X$ do not differ from input A.
The descriptions of the parameter setting possibilities and the adjustable communication objects for the inputs B...X should be taken from the descriptions from parameter window Enable Inputs A...X, page 35.
3.2.11.1. Parameter window A: Value/Forced op.

In this parameter window, all settings are undertaken for parameter window A: Value/Forced operation. The explanations also apply for the Inputs B...X.

This parameter window is visible if in parameter window Enable Inputs $A \ldots X$, page 35, the option Switch/Dim sensor has been selected in parameter Input A.

Enable communication object

"Disable" 1 bit

Options: no yes

- yes: The 1 bit Block communication object is enabled. This can be used to block the input.

Note

If the input is disabled and the option yes is selected with parameter Cyclic sending, the last state is still sent regardless of the block.

Using the communication object Block (No. 10), the physical input can be disabled, but internal sending continues, i.e. the input terminals are physically disconnected from the application program.
The communication object Block (No.10) has no influence on manual operation.

Capacitive screening

Options: \quad	up to 10 nF (standard)
	up to 20 nF
	up to 30 nF
	up to 40 nF

This parameter defines the degree of capacitive screening.
Transmission errors can occur on extended cable lengths under certain conditions, e.g. in a $5 \times 1.5 \mathrm{~mm}^{2}$ cable, where two conductors are used as a signal line and one conductor is used for switching loads, it may result in mutual interference. If this proves to be the case in an installation, the sensitivity of the input is increased. It should be noted that the signal evaluation also slows down.

Debounce time

Options: $\quad 10 / 20 / 30 / \underline{50} / 70 / 100 / 150 \mathrm{~ms}$
Debouncing prevents unwanted multiple operations of the input, e.g. due to bouncing of the contact.

What is the debounce time?

If an edge is detected at an input, the input will react immediately to this edge, e.g. by sending a telegram. At the same time, the duration of the debounce time T_{D} starts. The signal on the input is not evaluated within the debounce time duration.

The following example clarifies this:

After detection of an edge on the input, further edges are ignored for the debounce time T_{D}.

Control4 * KNX

Commissioning

Distinction between short and long operation
 Options: yes
 no

Using this parameter, you set if the input differentiates between short and long operation.

- yes: After opening/closing of the contact, first of all it is necessary to ascertain whether a short or long operation has occurred here. Only thereafter will a possible reaction be triggered.

Note

With Distinction between short and long operation, two communication objects are visible for each input. One communication object only transmits during short operation, the other communication object only during a long operation.

The following drawing shows the function in detail:

T_{L} is the time duration, from which a long operation is detected.
3.2.11.1.1. Parameter Distinction between short and long operation - no

If the option no is selected with the parameter Distinction between short and long operation, the following parameters in the parameter window A: Value/Forced op., page 65, are visible.

Opening the contacts $=>$ Event 0
Closing the contacts => Event 1
<--- NOTE

Activate minimum signal time

Options:
no yes

- yes: The following parameters appear:

On closing the contact in value $\mathrm{x} 0.1 \mathrm{~s}[0 . . .65,535]$
Options: $\quad 1 \ldots$ 10...65,535
On opening the contact in value $\mathrm{x} 0.1 \mathrm{~s}[0 . . .65,535]$
Options: $1 \ldots$ 10...65,535

What is the minimum signal time?
In contrast to the debounce time, a telegram is only sent, after the minimum signal duration has elapsed.
The individual functions are:
If an edge is detected on the input, the minimum signal duration will commence. No telegram is sent on the bus at this time. The signal on the input is observed within the minimum signal duration. If a further edge appears at the input during the minimum signal duration, it will be interpreted as a new operation, and the minimum signal duration restarts.
If no further edges occur after the start of the minimum signal duration, a telegram is sent on the bus, after the minimum signal duration has timed out.

Example: Minimum signal time of the input signal for a detected edge:

In only two cases, no further edge changes occur within the minimum signal duration Tm_{m} after a change of edge. For this reason, only both of these are detected as valid.

Scan input after download, ETS reset and bus voltage recovery

Options:
no
yes

- yes: The value of the communication object is scanned after a download, ETS reset and bus voltage recovery.
- no: The value of the communication object is not scanned after a download, ETS reset and bus voltage recovery.

With option yes, the following additional parameters appear in the parameter:

Inactive wait state after bus
voltage recovery in s [0...30,000]
Options: $\underline{0} \ldots 30,000$
Here the waiting time after a bus voltage recovery is set. After the waiting time has elapsed, the state on the input terminals is scanned. The input reacts as if the state on the input terminals has just changed.

Note

The inactive waiting time does not add to the actual, adjustable send delay time. This can be set separately.

Value 1 (Reaction with event 0)

Options: do not send 1 bit value [0/1] 2 bit value [forced operation] 1 byte value [-128...127]
1 byte value [0...255]
1 byte value [8 bit scene]
2 byte value [-32,768...32,767]
2 byte value [0...65,565]
2 byte value [EIB floating point]
3 byte value [time of day, weekday]
4 byte value $[-2,147,483,648 \ldots 2,147,483,647]$
4 byte value [0...4,294,967,295]
This parameter serves for defining the data type, which is sent when the contact is actuated.

Depending on the selection made in parameter Value 1 (rising edge / short operation), different parameters appear. All parameters are described in the following:

sent value $[\mathrm{X}]$

Options: ON/OFF/TOGGLE
0/1
-128...… 127
0... 255
-32,768...…32,767
0...65,535
-100...20... 100
$-2,147,483,648 \ldots 0 \ldots 2,147,483,647$
0...4,294,967,295

This parameter defines the value, which is sent on actuation.
The value range is dependent on the set data type of the value X.

sent value

Options:

> ON, activate forced operation
> OFF, activate forced operation
> Disable forced operation

This parameter defines the value, which is sent on actuation.
In the following table, the forced operation function is explained:

Bit 1	Bit 0	Acces	Description
0	0	Free	The switch output is enabled via the communication object
0	1	Free	Forced operation of the actuator. In this way, it is possible to switch the actuator directly via the communication object Switch.
1	0	Off	The switch output is disabled via the communication object Forced operation of the actuator. Now it is no longer possible to switch the actuator directly via the communication object Switch.
1	1	On	The switch output is enabled via the communication object Forced operation of the actuator. Now it is no longer possible to switch the actuator directly via the communication object Switch.

8 bit scene

Options: 1... 64
This parameter defines the KNX scene number, which is sent on actuation.

Store/Call scene

Options: call save

This parameter defines whether the scene is to be called or saved.
Hour [0...23]
Options: $\underline{0} . . .23$
Minute [0...59]
Options: $\underline{0} . .59$
Seconds [0...59]
Options: $\underline{0} . .59$
With these parameters, the hours, minutes and seconds, which are to be sent when actuated are set.

Weekday [1 = Mo, 2...6, $7=\mathrm{Su}$]

Options: $\quad 0=$ no day
1 = Monday
2 = Tuesday
3 = Wednesday
4 = Thursday
$5=$ Friday
6 = Saturday
7 = Sunday
Using these parameters, the weekday, which is sent on actuation, is set.

Value 2 (Reaction with event 1)

Note

The parameter descriptions of the parameter Value 2 (Reaction with event 1) correspond to those of the parameter Value 1 (Reaction with event 0).
3.2.11.1.2. Parameter Distinction between short and long operation - yes

If the option yes is selected with the parameter Distinction between short and long operation, the following parameters appear:

Connected contact type

Options: closed
open
closed: The input is closed with actuation. open: The input is opened with actuation.

Control4 KNX

Commissioning

Long operation after ...

Options: $\quad 0.3 / 0.4 / 0.5 / \underline{0.6 / 0.8 ~ s}$
1/1.2/1.5 s
2/3/4/5/6/7/8/9/10 s
Here the time period T_{L}, after which an actuation is considered a "long" operation, is defined.

Note
The remaining parameter descriptions can be found in the parameter
Distinction between short and long operation - no,
page 68.

3.2.11.2. Communication objects Value/forced operation

The communication objects of all Inputs do not differentiate from one another and are explained using Input A. The descriptions of the parameter setting options of Inputs $A \ldots X$ are described from parameter window Enable Inputs A...X, page 35.

The communication objects Input A have the nos. 10... 19 .
The communication objects Input B have the nos. 20... 29 .
The communication objects Input C have the nos. 30... 39 .
The communication objects Input D have the nos. $40 . . .49$.
The communication objects Input E have the nos. 50...59.
The communication objects Input F have the nos. 60... 69 .
The communication objects Input G have the nos. 70...79.
The communication objects Input H have the nos. 80... 89 .

Number	Object Function	Name	Length	C	R	W

No.	Function	Object name	Data type	Flags

10	Block	Input A:	1 bit DPT 1.003	C, W

This communication object is enabled if in parameter window A : Value/Forced operation the parameter Enable communication object "Disable" 1 bit has been selected with option yes.
Using the communication object Block, the input can be disabled or enabled. With activated communication object Block, the inputs are disabled.

Note

When the input is disabled, there is fundamentally no reaction to a signal change, but:

- Waiting for a long button operation or a minimum signal time is suspended.
- The parameter setting 8 bit scene is ended with saving.
- Communication objects continue to be updated and sent if necessary.

When enabling an input, a change of the signal states (as opposed to before the block) leads to immediate processing, e.g.:

- The minimum actuation or detection of a long/short button push starts.
- Communication objects send their current value if necessary.

The communication object Block has no influence on manual operation. The status of the simulated input signal continues to be sent here.

Telegram value: $\quad \begin{array}{ll}0=\text { enable input } A \\ 1 & =\text { disable input } A\end{array}$

Control4 * KNX

Commissioning

3.2.12. Operating mode Control scene

This operating mode enables calling and saving the states of several actuator groups. An actuator group consists of several communication objects that are associated by the same group address. It can, for example, consist of switching actuators (1 bit values) or dimming actuators (1 byte values). The data types can be parameterized.

In this chapter, you will find all descriptions for the parameter windows and the corresponding communication objects for operating mode Control scene.

Note

The inputs $\mathrm{B} . . . \mathrm{X}$ do not differ from input A .
The descriptions of the parameter setting possibilities and the adjustable communication objects for the inputs $B . . . X$ should be taken from the descriptions from parameter window Enable Inputs A...X, page 35.

3.2.12.1. Parameter window A: Control scene

In this parameter window, all settings are undertaken for parameter window A: Control scene.
The explanations also apply for the Inputs B...X.
This parameter window is visible if in parameter window Enable Inputs $A \ldots X$, page 35, the option Control scene has been selected in parameter Input A.

Enable communication object "Disable" 1 bit

Options: no

 yes- yes: The 1 bit Block communication object is enabled.

This can be used to block the input.

Note

If the input is disabled and the option yes is selected with parameter Cyclic sending, the last state is still sent regardless of the block.

Using the communication object Block (No. 10), the physical input can be disabled, but internal sending continues, i.e. the input terminals are physically disconnected from the application program.

The communication object Block (No.10) has no influence on manual operation.

Capacitive screening

Options: up to 10 nF (standard)
up to 20 nF
up to 30 nF
up to 40 nF
This parameter defines the degree of capacitive screening.
Transmission errors can occur on extended cable lengths under certain conditions, e.g. in a $5 \times 1.5 \mathrm{~mm}^{2}$ cable, where two conductors are used as a signal line and one conductor is used for switching loads, it may result in mutual interference. If this proves to be the case in an installation, the sensitivity of the input is increased. It should be noted that the signal evaluation also slows down.

Debounce time

Options: $\quad 10 / 20 / 30 / \underline{/ 50 / 70 / 100 / 150 ~ m s ~}$
Debouncing prevents unwanted multiple operations of the input, e.g. due to bouncing of the contact.

What is the debounce time?

If an edge is detected at an input, the input will react immediately to this edge, e.g. by sending a telegram. At the same time, the duration of the debounce time T_{D} starts. The signal on the input is not evaluated within the debounce time duration.

Example: Debounce time of the input signal for a detected edge:

After detection of an edge on the input, further edges are ignored for the debounce time T_{D}.

Connected contact type

Options: closed
open

- closed: The input is closed with actuation.
- open: The input is opened with actuation.

Store scene

Options: no
on long operation
with object value = 1
on long operation and object value $=1$
This parameter determines the way in which saving the current scene is triggered and which function the communication object Store scene has. This is dependent on the control of the scene.

- on long operation: Saving is activated as soon as a long operation has been detected.
- object value =1. If the communication object Store scene receives the value 1 , saving is activated.
- on long operation and object value = 1: Saving is activated as soon as a long operation has been detected and the communication object Enable storing has the value 1 .

What happens on the bus when Store scene has been triggered?
The scene is simply adapted by saving the current actuator values.
The communication object Store scene indication sends the value 1 if all feedbacks from the communication objects have been received. (Start of scene saving)
The values of the communication objects concerned are read via the bus.

The communication object Store scene indication sends the value 0 , if not all feedbacks from the communication objects have been received should the button be released prematurely. Saving is not undertaken if the button is released prematurely.

If the option on long operation or on long operation and object value $=1$ have been selected in the parameter Store scene, the following parameter appears.

Long operation after...

Options: $\quad 0.3 / 0.4 / \underline{0.5 / 0.6 / 0.8 / 1 / 1.2 / 1.5 / 2 / 3 / 4 / 5 / 6 / 7 / 8 / 9 / 10 ~ s ~}$
Here the time period T_{L}, after which an actuation is considered a "long" operation, is defined.

Actuator group A: type

Options: 1 bit value (ON/OFF)
1 byte value [0... 100 \%]
1 byte value [0...255]
2 byte value [temperature]
The different data types can be selected for each of the 6 actuator groups A...F.

Note

The setting options of actuator groups B...F do not differentiate from those of actuator group A. For this reason, only actuator group A will be explained here.
Depending on the data type set for the actuator groups, various options will be visible in the following Preset value parameter.

Preset value

Options: ON/OFF

$$
\begin{aligned}
& \overline{0 / 10} / 20 / 30 / 40 / 50 / 60 / 70 / 80 / 90 / 100 \% \\
& \underline{0} \ldots .255 \\
& -100,00 \ldots 20,00 \ldots 100,00
\end{aligned}
$$

This parameter defines the value which is sent on actuation. The value range is dependent on the set data type of the value X.

Note

If a scene has been saved via the bus and the preset value should now be restored, the communication object Restore scene to default must be written with the value 1. This is implemented via a download of the preset values or via an ETS reset.

Store via the bus

Options: yes
no
This parameter defines whether the scene is to be saved via the bus. The parameter is only active if the option has not been set to no in the parameter Store scene.
If reading of a communication object is not possible, the setting should be left at no (see parameter Store scene), otherwise, it may not be possible to save the entire scene.

3.2.12.2. Communication objects Control scene

The communication objects of all Inputs do not differentiate from one another and are explained using Input A. The descriptions of the parameter setting options of Inputs $A . . . X$ are described from parameter window Enable Inputs A...X, page 35.

The communication objects Input A have the nos. 10...19.
The communication objects Input B have the nos. 20... 29.
The communication objects Input C have the nos. 30... 39 .
The communication objects Input D have the nos. 40... 49 .
The communication objects Input E have the nos. 50...59.
The communication objects Input F have the nos. 60... 69.
The communication objects Input G have the nos. 70...79.
The communication objects Input H have the nos. 80... 89 .

| Number | Object Function | Name | Length | C | R | W | T |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | U

No.	Function	Object name	Data type	Flags
$\mathbf{1 0}$	Block	Input A:	$\mathbf{1}$ bit DPT 1.003	C, w

This communication object is enabled if in parameter window A: Control scene the parameter Enable communication object "Disable" 1 bit has been selected with option yes.

Using the communication object Block, the input can be disabled or enabled. With activated communication object Block, the inputs are disabled

Note

When the input is disabled, there is fundamentally no reaction to a signal change, but:

- Waiting for a long button operation or a minimum signa time is suspended.
- The parameter setting 8 bit scene is ended with saving.
- Communication objects continue to be updated and sent if necessary.

When enabling an input, a change of the signal states (as opposed to before the block) leads to immediate processing, e.g.:

- The minimum actuation or detection of a long/short button push starts.
- Communication objects send their current value if necessary.

The communication object Block has no influence on manual operation. The status of the simulated input signal continues to be sent here

No.	Function	Object name	Data type	Flags
13	Actuator group C [variable]	Input A: Control scene	Variable DPT variable	C, W, T
Dep 1 bit 1 by 1 by 2 by	ing on the setting, th ue (ON/OFF) alue [0...100] alue [0...255] alue [temperature]	munication object DPT DPT DPT DPT	following value tch value centage value nter value perature	the bus.
14	Actuator group D [variable]	Input A: Control scene	Variable DPT variable	C, W, T
Dep 1 bit 1 by 1 by 2 by	ing on the setting, th ue (ON/OFF) value [0...100] alue [0...255] alue [temperature]	munication object DPT DPT DPT DPT	following value ch value centage value nter value perature	the bus.
15	Actuator group E [variable]	Input A: Control scene	Variable DPT variable	C, W, T
Dep 1 bit 1 by 1 by 2 by	ing on the setting, th ue (ON/OFF) value [0...100] alue [0...255] alue [temperature]	munication object DPT DPT DPT DPT	following value ch value centage value nter value perature	the bus.
16	Actuator group F [variable]	Input A: Control scene	Variable DPT variable	C, W, T
Dep 1 bit 1 by 1 by 2 by	ing on the setting, th ue (ON/OFF) alue [0...100] alue [0...255] alue [temperature]	munication object DPT DPT DPT DPT	following value tch value centage value nter value perature	the bus.
17	Store scene	Input A: Control scene	1 bit DPT 1.003	C, W
This communication object appears only with the option Object value $=1$. This object can be set in the parameter Store scene. This communication object is used to enable saving of a scene via the bus. The function depends on the method of storing the scene.				

Control4 * KNX

Commissioning

No.	Function	Object name	Data type	Flags
$\mathbf{1 7}$	Enable storing	Input A: Control scene	$\mathbf{1}$ bit DPT 1.003	C, W
This communication object appears only with the option on long operation and object value = 1. This object can be set in the parameter Store scene. This communication object is used to trigger saving of a scene via the bus. The function depends on the method of storing the scene.				
$\mathbf{1 8}$	Store scene indication	Input A: Control scene	$\mathbf{1}$ bit DPT 1.003	C, T
This communication object is used to indicate saving of a scene, e.g. by an LED. The function depends on the method of storing the scene.				
$\mathbf{1 9}$	Restore scene to default	Input A: Control scene	1 bit DPT 1.003	C, R, W, T
This communication object is used to restore a scene to the default settings.				

3.2.13. Operating mode Switching sequences

A switching sequence facilitates a step-by-step change of up to five switching objects with just a single input actuation. In this way, up to 5 actuators or actuator groups can be switched in a defined switching sequence.

In this chapter, you will find all descriptions for the parameter windows and the corresponding communication objects for operating mode Switching sequences.

Note

The inputs $\mathrm{B} . . \mathrm{X}$ do not differ from input A .
The descriptions of the parameter setting possibilities and the adjustable communication objects for the inputs $B . . . X$ should be taken from the descriptions from parameter window Enable Inputs A...X, page 35.

3.2.13.1. Parameter window A: Switching sequences

In this parameter window, all settings are undertaken for parameter window A: Switching sequences.
The explanations also apply for the Inputs $B \ldots X$.
This parameter window is visible if in parameter window Enable Inputs $A \ldots X$, page 35, the option Switching sequences has been selected in parameter Input A.

Enable communication object

"Disable" 1 bit
Options: no
yes

- yes: The 1 bit Block communication object is enabled.

This can be used to block the input.

Note

If the input is disabled and the option yes is selected with parameter Cyclic sending, the last state is still sent regardless of the block.

Using the communication object Block (No. 10), the physical input can be disabled, but internal sending continues, i.e. the input terminals are physically disconnected from the application program.
The communication object Block (No. 10) has no influence on manual operation.

Capacitive screening

Options: up to 10 nF (standard)
up to 20 nF
up to 30 nF
up to 40 nF
This parameter defines the degree of capacitive screening.
Transmission errors can occur on extended cable lengths under certain conditions, e.g. in a $5 \times 1.5 \mathrm{~mm}^{2}$ cable, where two conductors are used as a signal line and one conductor is used for switching loads, it may result in mutual interference. If this proves to be the case in an installation, the sensitivity of the input is increased. It should be noted that the signal evaluation also slows down.

Debounce time

Options: $\quad 10 / 20 / 30 / \underline{/ 50 / 70 / 100 / 150 ~ m s ~}$
Debouncing prevents unwanted multiple operations of the input, e.g. due to bouncing of the contact.

What is the debounce time?

If an edge is detected at an input, the input will react immediately to this edge, e.g. by sending a telegram. At the same time, the duration of the debounce time T_{D} starts. The signal on the input is not evaluated within the debounce time duration.

The following example clarifies this:

After detection of an edge on the input, further edges are ignored for the debounce time To.

Connected contact type

Options: closed
open

- closed: The input is closed with actuation.
- open: The input is opened with actuation.

Activate minimum signal time

$$
\text { Options: } \quad \frac{\text { no }}{\text { yes }}
$$

- yes: The following parameters appear:
for rising edge
in value $\times 0.1 \mathrm{~s}[1 . . .65,535]$
Options: 1...10...65,535

Note

A rising edge corresponds to a normally opened contact function.

for falling edge

 in value $x 0.1 \mathrm{~s}[1 . . .65,535]$Options: 1...10...65,535

Note

A falling edge corresponds to a normally closed contact function.

What is the minimum signal time?

In contrast to the debounce time, a telegram is only sent, after the minimum signal duration has elapsed.

The individual functions are:
If an edge is detected on the input, the minimum signal duration will commence. No telegram is sent on the bus at this time. The signal on the input is observed within the minimum signal duration. If a further edge appears at the input during the minimum signal duration, it will be interpreted as a new operation, and the minimum signal duration restarts.
If no further edges occur after the start of the minimum signal duration, a telegram is sent on the bus, after the minimum signal duration has timed out.

Example: Minimum signal time of the input signal for a detected edge:

In only two cases, no further edge changes occur within the minimum signal duration Tm_{m} after a change of edge. For this reason, only both of these are detected as valid.

Number of levels:

Options: $\quad 2 / \underline{3} / 4 / 5$
The number of levels (maximum 5) corresponds to the number of communication objects: The communication objects Value 1 to Value 5 are enabled accordingly.

Type of switching sequence (example: 3 levels)
Options:

$$
\begin{aligned}
& =>000-001-011-111(\text { sequence } 1) \\
& \text { Gray code }(\text { sequence } 2) \\
& <=000-001-011-111-011-001=>\text { (sequence } 3) \\
& <=000-001-011-111=>(\text { sequence } 4) \\
& \leq=000-001-000-010-000-100=>\text { (sequence } 5)
\end{aligned}
$$

The switching sequences correspond to the states of three communication objects ($0=$ OFF, $1=\mathrm{ON}$).

The type of switching sequences can be chosen here. Each sequence has different communication objects for each level.
The switching sequences allow switch on or off of up to five communication objects (1 bit) in a defined sequence. Every time the button is switched, one further step in the sequence occurs.

Switching sequences $<=000-001-011-111=>$ (sequence 1)

With this switching sequence, a further group address is sent via another communication object (value x) after each successive actuation. If all group addresses have been sent in one direction via the communication objects (value x), further actuations are ignored. For this reason, at least two binary inputs are required, where one switches upwards and the other switches downwards.

Note

The group addresses must be different for separate upward and downward switching.
A synchronization for the switching sequences for up and down is implemented using the number of the switching sequence operation. The same group address must be used here.

Number of operation	Switching sequence	Value of the communication objects		
		Switch 3	Switch 2	Switch 1
0	000	OFF	OFF	OFF
1	001	OFF	OFF	ON
2	011	OFF	ON	ON
3	111	ON	ON	ON
\ldots	\ldots	\ldots	\ldots	\ldots

Gray code (sequence 2)

In this sequence, all communication object combinations are undertaken successively. Only the value of one communication object changes between two switching levels. A good example of this switching sequence, for example, is switching of two lighting groups in the sequence 00-01-11-10-00...

For further information see: Gray code, page CXXIX
Switching sequence $<=$ 000-001-011-111-011-001=> (sequence 3)
This switching sequence switches on a further communication object with each successive actuation. If all communication objects are switched on, they are switched off successively commencing with the last one to be switched on.

Number of operation	Switching sequence	Value of the communication objects		
		Switch 3	Switch 2	Switch 1
0	000	OFF	OFF	OFF
1	001	OFF	OFF	ON
2	011	OFF	ON	ON
3	111	ON	ON	ON
4	011	OFF	ON	ON
5	001	OFF	OFF	ON
\ldots	\ldots	\ldots	\ldots	\ldots

Switch sequence <=000-001-011-111-000=> (sequence 4)

This switching sequence switches on a further communication object with each successive actuation. If all communication objects are switched on, they are all switch off together.

Number of operation	Switching sequence	Value of the communication objects		
		Switch 3	Switch 2	Switch 1
0	000	OFF	OFF	OFF
1	001	OFF	OFF	ON
2	011	OFF	ON	ON
3	111	ON	ON	ON
\ldots	\ldots	\ldots	\ldots	\ldots

Control4 * KNX

Commissioning

Switch sequence $<=000-001-010-000-100-000=>$ (sequence 5)

This switching sequence switches on with the actuation of a communication object and then off again. Thereafter, other communication objects are switched on or off.

Number of operation	Switching sequence	Value of the communication objects		
		Switch 3	Switch 2	Switch 1
0	000	OFF	OFF	OFF
1	001	OFF	OFF	ON
2	011	OFF	OFF	OFF
3	111	OFF	ON	OFF
4	011	OFF	OFF	OFF
5	001	ON	OFF	OFF
\ldots	\ldots	\ldots	\ldots	\ldots

Further possibilities

In addition to actuation of the binary input, the switching sequence can be changed by using communication object Level increment/decrement.

This is used, for example, to switch two or more binary inputs upwards and/or downwards.

Note

The current switching sequence results from the value of the Number of operation of the switching sequences.

Direction on operation

Options: upwards downwards

This parameter determines, whether the level is switched upwards or downwards, when the button is pushed.

3.2.13.2. Communication objects Switch sequences

The communication objects of all Inputs do not differentiate from one another and are explained using Input A. The descriptions of the parameter setting options of Inputs $A \ldots . X$ are described from parameter window Enable Inputs A...X, page 35.

The communication objects Input A have the nos. 10... 19 .
The communication objects Input B have the nos. 20... 29 .
The communication objects Input C have the nos. 30... 39 .
The communication objects Input D have the nos. $40 \ldots 49$.
The communication objects Input E have the nos. 50...59.
The communication objects Input F have the nos. 60...69.
The communication objects Input G have the nos. $70 . . .79$.

The communication objects Input H have the nos. 80... 89 .

Number	Object Function	Name	Length	C	R	w	T	U
[$\vec{c}^{1} 10$	Block	Input A:	1 bit	C	-	W	-	-
- 헉11	Value 1	Input A :, Switching sequence	1 bit	C	-	W	T	-
[$\vec{\sim}_{1} 12$	Value 2	Input A :, Switching sequence	1 bit	C	-	W	T	-
- 허서	Value 3	Input A :, Switching sequence	1 bit	C	-	W	T	-
[븀 14	Value 4	Input A :, Switching sequence	1 bit	C	-	W	T	-
- 혓 15^{15}	Value 5	Input A:, Switching sequence	1 bit	C	-	W	T	-
[걱 16	Level increment/decrement	Input $A:$, Switching sequence	1 bit	C	-	w	-	-
[현17	Number of operation	Input A:, Switching sequence	1 Byte	C	-	W	T	-

No.	Function	Object name	Data type	Flags
$\mathbf{1 0}$	Block	Input A:	$\mathbf{1}$ bit DPT 1.003	C, w

This communication object is enabled if in parameter window A : Switching sequences the parameter Enable communication object "Disable" 1 bit has been selected with option yes.

Using the communication object Block, the input can be disabled or enabled. With activated communication object Block, the inputs are disabled.

Note

When the input is disabled, there is fundamentally no reaction to a signal change, but:

- Waiting for a long button operation or a minimum signal time is suspended.
- The parameter setting 8 bit scene is ended with saving.
- Communication objects continue to be updated and sent if necessary.

When enabling an input, a change of the signal states (as opposed to before the block) leads to immediate processing, e.g.:

- The minimum actuation or detection of a long/short button push starts.
- Communication objects send their current value if necessary.

The communication object Block has no influence on manual operation. The status of the simulated input signal continues to be sent here.

$0=$ enable input A $1=$ disable input A						
$\mathbf{1 1}$	Value 1	Input A: Switching	$\mathbf{1}$ bit DPT 1.001	C, W, T		

The number of these maximum of 5 communication objects is set in parameter Number of levels. The communication objects represent the values within the switching sequence.

12	Value 2	Input A: Switching sequences	1 bit DPT 1.001	C, W, T

The number of these maximum of 5 communication objects is set in parameter Number of levels. The communication objects represent the values within the switching sequence.

13	Value 3	Input A: Switching sequences	1 bit DPT 1.001	C, W, T

The number of these maximum of 5 communication objects is set in parameter Number of levels. The communication objects represent the values within the switching sequence.

14	Value 4	Input A: Switching sequences	1 bit DPT 1.001	C, W, T

The number of these maximum of 5 communication objects is set in parameter Number of levels. The communication objects represent the values within the switching sequence.

No.	Function	Object name	Data type	Flags
$\mathbf{1 5}$	Value 5	Input A: Switching sequences	1 bit DPT 1.001	C, W, T
The number of these maximum of 5 communication objects is set in parameter Number of levels. The communication objects represent the values within the switching sequence.				
$\mathbf{1 6}$	Level increment/decrement	Input A: Switching sequences	1 bit DPT 1.001	C, W
Telegram value:				

When a telegram is received with the value 1 on the communication object, the input of a stage in the switching sequence switches up. If a telegram with the value 0 is received, it switches down.

17	Number of operation	Input A: Switching sequences	1 byte DPT 5.010	C, W, T
This communication object includes the number of operation of the respective switching sequence. With synchronization of several binary inputs, the respective communication object should be linked with the same group address.				
	Note			
	Ensure that the number of communication objects is equal to the inputs to be synchronised, e.g. 3 stages.			
$\begin{aligned} & 18 . . \\ & 19 \end{aligned}$				
Not	gned in this operating mod			

3.2.14. Operating mode Multiple operation

This operating mode ensures that the number of actuations assigned to a communication object value is set and sent via an assigned group address in dependence on the number of button operations. In this way, it is possible, e.g. that different light scenes can be implemented depending on the number of multiple operations.
In this chapter, you will find all descriptions for the parameter windows and the corresponding communication objects for operating mode Multiple operation.

Note

The inputs $\mathrm{B} \ldots \mathrm{X}$ do not differ from input A .
The descriptions of the parameter setting possibilities and the adjustable communication objects for the inputs $B \ldots X$ should be taken from the descriptions from parameter window Enable Inputs A...X, page 35.

3.2.14.1. Parameter window A: Multiple operation

In this parameter window, all settings are undertaken for parameter window A: Switching sequences.
The explanations also apply for the Inputs B...X.
This parameter window is visible if in parameter window Enable Inputs A...X, page 35, the option Switching sequences has been selected in parameter Input A.

Enable communication object "Disable" 1 bit

Options: no yes

- yes: The 1 bit Block communication object is enabled. This can be used to block the input.

Note

If the input is disabled and the option yes is selected with parameter Cyclic sending, the last state is still sent regardless of the block.

Using the communication object Block (No. 10), the physical input can be disabled, but internal sending continues, i.e. the input terminals are physically disconnected from the application program.

The communication object Block (No.10) has no influence on manual operation.

Capacitive screening

Options: \quad	up to 10 nF (standard)
	up to 20 nF
	up to 30 nF
	up to 40 nF

This parameter defines the degree of capacitive screening.
Transmission errors can occur on extended cable lengths under certain conditions, e.g. in a $5 \times 1.5 \mathrm{~mm}^{2}$ cable, where two conductors are used as a signal line and one conductor is used for switching loads, it may result in mutual interference. If this proves to be the case in an installation, the sensitivity of the input is increased. It should be noted that the signal evaluation also slows down.

Debounce time

Options: $\quad 10 / 20 / 30 / \underline{50} / 70 / 100 / 150 \mathrm{~ms}$
Debouncing prevents unwanted multiple operations of the input, e.g. due to bouncing of the contact.

What is the debounce time?

If an edge is detected at an input, the input will react immediately to this edge, e.g. by sending a telegram. At the same time, the duration of the debounce time T_{D} starts. The signal on the input is not evaluated within the debounce time duration.

The following example clarifies this:

After detection of an edge on the input, further edges are ignored for the debounce time T_{D}.

Connected contact type

Options: closed
open

- closed: The input is closed with actuation.
- open: The input is opened with actuation.

Additional communication object for long operation

Options: yes
no
A further function can be carried out with long operation of the input via the communication object Long operation. If a long operation is undertaken within the maximum time after one or more short operations, the short operations are ignored.

- yes: The communication object Long operation is enabled.

An additional parameter appears:
Long operation after ...
Options: $\quad 0.3 / 0.4 / 0.5 / \underline{0.6 / 0.8 ~ s}$
$1 / 1.2 / 1.5 \mathrm{~s}$
2/3/4/5/6/7/8/9/10 s
Here the time period T_{L}, after which an actuation is considered a "long" operation, is defined.

Max. number of operations (= number of communication objects)
Options: 1-fold
2-fold
3-fold
This parameter defines the maximum number of operations that are possible. The number is equal to the number of communication objects x fold operation. If the button is actuated more often, the maximum value set here, the binary input responds in accordance with the set maximum value.

```
sent value
(object "...-fold operation"
Options: ON
    OFF
    TOGGLE
```

This parameter defines the value of the communication object that should be sent. The settings ON, OFF and TOGGLE are possible. The current value of the communication object is inverted using TOGGLE.

Send value on every operation

Options: yes
no

- yes: The respective value of the communication object is updated and sent with each actuation.

Example

With three button actuations, the communication objects
1 -fold operation (after the 1st operation),
2-fold operation (after the 2nd operation) and
3-fold operation (after the 3rd operation) are sent successively immediately after the respective operation.

- no: The physical input counts the number of operations that occur successively within the allowed time interval. Thereafter, the corresponding number of communication objects, e.g.: three counted operations $=$ CO 3 -fold operation is sent.

Maximum time between two operations

Options: $\quad 0.3 / 0.4 / \underline{0.5} / 0.6 / 0.8 / 1 / 1.2 / 1.5 / 2 / 3 / 4 / 5 / 6 / 7 / 8 / 9 / 10 \mathrm{~s}$
This parameter determines the time that can elapse between two operations. After an operation, it will wait for the time entered here. If there are no further operations within this period, the communication object x-fold operation is sent. With a further operation, the time set here restarts.
If in parameter Additional communication object for long operation the option yes is selected, the following parameter appears:

sent value
 (object "Telegr. operation long")
 Options: ON OFF TOGGLE

A further function can be carried out with long operation of the button via the communication object Long operation. If a long operation of the button is undertaken within the maximum time after one or more short operations, the short operations are ignored.

3.2.14.2. Communication objects Multiple operation

The communication objects of all Inputs do not differentiate from one another and are explained using Input A. The descriptions of the parameter setting options of Inputs $A \ldots . X$ are described from parameter window Enable Inputs $A \ldots X$, page 35.

The communication objects Input A have the nos. 10... 19 .
The communication objects Input B have the nos. 20... 29 .
The communication objects Input C have the nos. 30... 39 .
The communication objects Input D have the nos. $40 \ldots 49$.
The communication objects Input E have the nos. 50...59.
The communication objects Input F have the nos. 60...69.
The communication objects Input G have the nos. 70...79.
The communication objects Input H have the nos. 80... 89 .

Number	Object Function	Name	Length	C	R	W	T

No.	Function	Object name	Data type	Flags
$\mathbf{1 0}$	Block	Input A:	$\mathbf{1}$ bit DPT 1.003	C, W

This communication object is enabled if in parameter window A : Multiple operation, the parameter Enable communication object "Disable" 1 bit has been selected with option yes.

Using the communication object Block, the input can be disabled or enabled. With activated communication object Block, the inputs are disabled.

Note

When the input is disabled, there is fundamentally no reaction to a signal change, but:

- Waiting for a long button operation or a minimum signal time is suspended.
- The parameter setting 8 bit scene is ended with saving.
- Communication objects continue to be updated and sent if necessary.

When enabling an input, a change of the signal states (as opposed to before the block) leads to immediate processing, e.g.:

- The minimum actuation or detection of a long/short button push starts.
- Communication objects send their current value if necessary.

The communication object Block has no influence on manual operation. The status of the simulated input signal continues to be sent here.

$$
\begin{array}{ll}
\text { Telegram value: } & 0=\text { enable input } A \\
& 1=\text { disable input } A
\end{array}
$$

11	1 -fold operation	Input A: Multiple operation	1 bit DPT 1.001	C, W, T

After multiple operations of an input, the respective communication object is sent to suit the number of operations.
The telegram value can be set in the parameters.

12	2-fold operation	Input A: Multiple operation	1 bit DPT 1.001	C, W, T

After multiple operations of an input, the respective communication object is sent to suit the number of operations.
The telegram value can be set in the parameters.

13	3-fold operation	Input A: Multiple operation	1 bit DPT 1.001	C, W, T

After multiple operations of an input, the respective communication object is sent to suit the number of operations.
The telegram value can be set in the parameters.

Control4 * KNX

Commissioning

No.	Function	Object name	Data type	Flags
$\mathbf{1 4}$	4-fold operation	Input A: Multiple operation	$\mathbf{1}$ bit DPT 1.001	C, W, T

After multiple operations of an input, the respective communication object is sent to suit the number of operations.
The telegram value can be set in the parameters.

15	Long operation	Input A: Multiple operation	1 bit DPT 1.001	C, W, T

This communication object is visible if the parameter Additional communication object for long operation has been set to the value yes. The communication object is sent after a long operation has been detected. The interval after which an operation is interpreted as "long" can be set.

$16 .$. 19				
Not assigned in this operating mode.				

3.2.15. Operating mode Counter

In the operating mode Counter, the device is able to count the number of edges received on the binary input. If required, a differential counter is provided in addition to the normal counter. Both are controlled via the same counting pulses, but count independently of one another.

In this chapter, you will find all descriptions for the parameter windows and the corresponding communication objects for operating mode Counter.

Note

The inputs $\mathrm{B} . . \mathrm{X}$ do not differ from input A .
The descriptions of the parameter setting possibilities and the adjustable communication objects for the inputs $\mathrm{B} . . \mathrm{X}$ should be taken from the descriptions from parameter window Enable Inputs A...X, page 35.

3.2.15.1. Counting pulses

The Counter function is used for counting input pulses. In the parameter window Counter a main counter is provided. It is possible to enable a differential counter (comparable with an odometer counting daily mileage) to record differential values. The starting point of the differential counter is programmable. The settings for the differential counter can be found in the additional parameter window A: Differential Counter.

The following illustration provides an overview of the Counter function.

Which preconditions must be fulfilled on the main counter to set the value?

1. Set the write flag.
2. Thereafter, it is possible to set the value via KNX.

Control4 KNX

Commissioning

In order to adapt the counter speed, the number of input pulses per counting pulse can be set. Furthermore, a counter level change can be set for each counting pulse. Both counter values can either be sent on the bus cyclically or on request.

Limit values can be defined for the counter. Telegrams are sent after the limit values are exceeded.

Note

The maximum counter frequency may not exceed 5 Hz .
The minimum pulse duration is 50 ms . The maximum capacitive load on the input is 22 nF .

3.2.15.2. Behaviour of the counter readings after a download

The counter readings are not deleted after a download.

3.2.15.3. Behaviour of the counter readings bus voltage failure

The counter readings are saved after a bus voltage failure. The counter readings can be sent after bus voltage recovery.
3.2.15.4. Specific feature differences between main counter and differential counter

Description	Main Counter	Differential counter
Block	yes	yes
Data type can defined	yes	yes
Start value is the smallest limit value when counting upwards	yes	yes
Start value is the largest limit value when counting downwards	yes	yes
The communication object $X Z:$ Limit value reached sends a 1 as soon as the counter pulse has exceeded the smaller or larger limit value.	yes	yes
If the option continue circular counting is set, the counter reading is set to the start value and any possible overflow is added to the start value.	Cannot be set	yes
If the option stop until $E T S$ reset is set, this and all following counter pulses are ignored until the differential counter is reset by the communication object DC: reset.	Cannot be set	yes
Counts up/down	adjustable	adjustable
Limit value 1 preset to zero	yes	adjustable
Circular count	yes	adjustable
Reset the counter	no	yes

3.2.15.5. Parameter window A : Counter

In this parameter window, all settings are undertaken for parameter window A: Counter.
The explanations also apply for the Inputs B...X.
This parameter window is visible if in parameter window Enable Inputs A...X, page 35, the option Counter has been selected in parameter Input A.

Enable communication object

"Disable" 1 bit
Options:

- yes: The 1 bit Block communication object is enabled.

This can be used to block the input.

Note

If the input is disabled and the option yes is selected with parameter Cyclic sending, the last state is still sent regardless of the block.

Using the communication object Block (No. 10), the physical input can be disabled, but internal sending continues, i.e. the input terminals are physically disconnected from the application program.

If the input is disabled, the main counter and the differential counter will not count pulses.
The communication object Block (No. 10) has no influence on manual operation.

Capacitive screening

Options: up to 10 nF (standard)
up to 20 nF
up to 30 nF
up to 40 nF
This parameter defines the degree of capacitive screening.
Transmission errors can occur on extended cable lengths under certain conditions, e.g. in a $5 \times 1.5 \mathrm{~mm}^{2}$ cable, where two conductors are used as a signal line and one conductor is used for switching loads, it may result in mutual interference. If this proves to be the case in an installation, the sensitivity of the input is increased. It should be noted that the signal evaluation also slows down.

Debounce time

Options: $\quad 10 / 20 / 30 / \underline{/ 50 / 70 / 100 / 150 ~ m s ~}$
Debouncing prevents unwanted multiple operations of the input, e.g. due to bouncing of the contact.

What is the debounce time?

If an edge is detected at an input, the input will react immediately to this edge, e.g. by sending a telegram. At the same time, the duration of the debounce time T_{D} starts. The signal on the input is not evaluated within the debounce time duration.

The following example clarifies this:

After detection of an edge on the input, further edges are ignored for the debounce time T_{D}.

Enable differential Counter

Options: yes
no

- yes: The parameter window Differential counter is enabled.

Activate minimum signal time

$$
\text { Options: } \quad \frac{\text { no }}{\text { yes }}
$$

- yes: The following parameters appear:
for rising edge
in value $\times 0.1 \mathrm{~s}[1 . . .65,535]$
Options: 1...10...65,535

Note

A rising edge corresponds to a normally opened contact function.

for falling edge

 in value $x 0.1 \mathrm{~s}[1 . . .65,535]$Options: 1...10...65,535

Note

A falling edge corresponds to a normally closed contact function.

What is the minimum signal time?

In contrast to the debounce time, a telegram is only sent, after the minimum signal duration has elapsed.
The individual functions are:
If an edge is detected on the input, the minimum signal duration will commence. No telegram is sent on the bus at this time. The signal on the input is observed within the minimum signal duration. If a further edge appears at the input during the minimum signal duration, it will be interpreted as a new operation, and the minimum signal duration restarts.
If no further edges occur after the start of the minimum signal duration, a telegram is sent on the bus, after the minimum signal duration has timed out.

Example: Minimum signal time of the input signal for a detected edge:

In only two cases, no further edge changes occur within the minimum signal duration Tm_{m} after a change of edge. For this reason, only both of these are detected as valid.

Commissioning

Main Counter

<--- NOTE

Data type

Options: 8 bit value [-128...127]
8 bit value [0...255]
16 bit value $[-32,768 \ldots 32,767]$
16 bit value [0...65,535]
32 bit value $[-2,147,485,648 \ldots 2,147,483,647]$
This parameter defines the data type of the counter.
This parameter defines the data type of the differential counter.
Both of the following parameters are dependent on the parameter Data type. Depending on the Data type selected, different limit values are preset. The input fields can be freely edited.

Note

The first reset counter pulse that exceeds or falls below the limit value sets the counter to the opposite limit value. With the next counter pulse, the new counter reading (set according to the respective counter value) continues to count in the parameterized counting direction.

Example

Mode of main counter counting
Limit value 1 [0] of the limit value is set to zero.
Limit value 2 [255] of the limit value is set, for example to 10
For each counter pulse 1 is added commencing at 0
$0=>1 \Rightarrow>2=>3=>4=>5=>6=>7=>8=>9=>10$ with 10 counter pulses ($=>$) the upper limit is reached. With the next counter pulse, the counter is set to the opposite limit value, i.e. to 0 , and then continues again up to 10 . In order to implement a circular count, 11 counter pulses are required here.

Note

It is necessary to ensure that both limit values are set to different values. If the same limit values are defined, the behaviour of the counter is undefined.

The limit values can be set to any value, i.e. limit value 1 can be greater than or less than limit value 2. The application program automatically chooses, for example, the largest limit value from both set limits and starts counting upwards or downwards to suit the direction of counting.

Limit value 1

[0]
Limit value 1 is preset to 0 for every data type.

Limit value 2

[X]
Options: $\underline{127}$
[-128...127]
255
32,767
[0...255]
65,565
[-32,768...32,767]
2,147,400,000
[0...65,535]
[-2,147,400,000...2,147,400,000]

Mode of counting

Options: $\frac{+1 \text { on rising edge (standard) }}{\text { adapt...: }}$
This parameter defines the mode of counting of the counter.

- $\quad+1$ on rising edge (standard): The counter value is incremented by one with every rising edge.
- adapt...: Three further parameters appear:

Create input pulse

$$
\begin{array}{ll}
\text { Options: } & \begin{array}{l}
\text { only on rising edge: } \\
\text { only on falling edge: }
\end{array} \\
& \text { on both edges: }
\end{array}
$$

With this parameter, you set how the input pulse is to be generated.

- only on rising edge: The pulse is generated with a rising edge.
- only on falling edge: The pulse is generated with a falling edge.
- on both edges: The pulse is generated with a rising and falling edge.

Number of input pulses for one counter step [1...10,000]

Options: 1...10,000
This parameter defines the number of input pulses required to generate a counter pulse for the main and differential counter.

Example

After every 10 input pulses the counters are incremented by 1.

Change of counter for every
counter step [-10,000...10,000]
Options: -10,000...1...10,000
This parameter defines by how much the counter is changed for a counter pulse.

Negative values, e.g. -1, define the downward counter direction, e.g. 200...0.

Positive values, e.g. 10, define the upward counter direction, e.g. 10... 200.

Send counter value on download,

ETS reset and bus voltage recovery

Options: yes
no

- yes: After bus voltage recovery and after the send delay time has timed out, the device sends the communication object Counter value on the bus.

Send counter values on change

Options: yes
no
This parameter defines whether a change of the counter value is to be sent.

Send counter level cyclically

Options: yes
no
Using this parameter, you determine if the counter value is sent cyclically on the bus.
3.2.15.6. Parameter window A: Differential counter

In this parameter window, all settings are undertaken for parameter window A: Differential Counter.
The explanations also apply for the Inputs B...X.
This parameter window is visible if in parameter window Enable Inputs A...X, page 35, the option Counter in parameter Input A and in parameter window A: Counter, page 103, the option yes has been selected in parameter Enable differential Counter.

Data type

Options: 8 bit value [-128...127]/
8 bit value [0...255]/
16 bit value [-32,768...32,767]/
16 bit value [0...65,535]
32 bit value $[-2,147,485,648 \ldots 2,147,483,647]$
This parameter defines the data type of the differential counter.
Both of the following parameters are dependent on the parameter Data type. Depending on the Data type selected, different limit values are preset. The input fields can be freely edited.

Note

The first reset counter pulse that exceeds or falls below the limit value sets the counter to the opposite limit value. With the next counter pulse, the new counter reading (set according to the respective counter value) continues to count in the parameterized counting direction.

Example

Mode of main counter counting
Limit value 1 [0] of the limit value is set to zero.
Limit value 2 [255] of the limit value is set, for example to 10
For each counter pulse 1 is added commencing at 0 .
$0=>1=>2=>3=>4=>5=>6=>7=>8=>9=>10$ with 10 counter pulses ($=>$) the upper limit is reached. With the next counter pulse, the counter is set to the opposite limit value, i.e. to 0 , and then continues again up to 10 . In order to implement a circular count, 11 counter pulses are required here.

Note

It is necessary to ensure that both limit values are set to different values. If the same limit values are defined, the behaviour of the counter is undefined.

The limit values can be set to any value, i.e. limit value 1 can be greater than or less than limit value 2. The application program automatically chooses, for example, the largest limit value from both set limits and starts counting upwards or downwards to suit the direction of counting.

Limit value 1

[X]
Options:

$\underline{0}$	$[-128 \ldots 127]$
$\underline{0}$	$[0 \ldots 255]$
$\underline{0}$	$[-32,768 \ldots 32,767]$
$\underline{0}$	$[0 \ldots 65.535]$
$\underline{0}$	$[-2,147,400,000 \ldots 2,147,400,000]$

Limit value 2

[X]
Options:

127
$\underline{255}$
32,767
65,565
2,147,400,000
[-128...127]
[0...255]
[-32,768...32,767]
[0...65,535]
[-2,147,400,000...2,147,400,000]

Behaviour on crossing the limit value
Options: continue circular counting
stop until ETS reset
This parameter defines the reaction to reaching a limit value.

- continue circular counting: The counter continues with circular counting. When the counter drops below the lower limit value (only possible with a downward counter), the counter is set to the value of the larger limit value and the downward pulse count continues from this value. When the larger limit value is exceeded, the counter is set to the lower limit value and pulse counting continues.
- stop until ETS reset: The counter stops and waits for an ETS reset.

Note

After an ETS reset, circular counting continues.

Mode of counting like main counter

<--- Note
The direction of counting of the differential counter is the same as for the main counter.

Reverse direction of counting

Options: yes
no
This parameter is used for reversing the direction of counting of the differential counter in comparison to the main counter.

Send counter value on download, ETS reset and bus voltage recovery

Options:
yes
no

- yes: After bus voltage recovery and after the send delay time has timed out, the device sends the communication object $D C$: counter value on the bus.

Send counter values on change

Options: yes
no
This parameter defines whether a change of the counter value is to be sent.

Send counter level cyclically

Options: yes
no
Using this parameter, you set if the counter value is sent cyclically on the bus.

3.2.15.7. Communication objects A : Counter

The communication objects of all Inputs do not differentiate from one another and are explained using Input A. The descriptions of the parameter setting options of Inputs $A \ldots . X$ are described from parameter window Enable Inputs A... X, page 35.
The communication objects Input A have the nos. 10... 19 .
The communication objects Input B have the nos. 20... 29 .
The communication objects Input C have the nos. 30... 39 .
The communication objects Input D have the nos. $40 \ldots 49$.
The communication objects Input E have the nos. 50...59.
The communication objects Input F have the nos. 60...69.
The communication objects Input G have the nos. 70...79.
The communication objects Input H have the nos. 80...89.

Number	Object Function	Name	Length	C	R	W	T	U
[- $\vec{\sim}_{10} 10$	Block	Input A:	1 bit	C	-	W	-	-
	MC: counter value	Input A:, Counter	4 Byte	C	-	-	T	-
	DC: counter value	Input A:, Counter	4 Byte	C	-	-	T	-
[켱 13	Request counter value	Input A:, Counter	1 bit	C	-	W	-	-
[${ }_{\text {che }} 14$	MC: limit value reached	Input A:, Counter	1 bit	C	-	-	T	-
[문 15	DC: limit value exceeded	Input A:, Counter	1 bit	C	-	-	T	-
[켜ㅇㅕㅢ	DC: reverse direction	Input A:, Counter	1 bit	C	R	W	T	-
[켝 17	DC: reset	Input A:, Counter	1 bit	C	R	W	T	-
[$\vec{\square}^{18}$	DC: stop	Input A:, Counter	1 bit	C	R	W	T	-

No.	Function	Object name	Data type	Flags
$\mathbf{1 0}$	Block	Input A:	$\mathbf{1}$ bit DPT 1.003	c, W

This communication object is enabled if in parameter window A : Counter the parameter Enable communication object "Disable" 1 bit has been selected with option yes.

Using the communication object Block, the input can be disabled or enabled. With activated communication object Block, the inputs are disabled.

Note

When the input is disabled, there is fundamentally no reaction to a signal change, but:

- Waiting for a long button operation or a minimum signal time is suspended.
- The parameter setting 8 bit scene is ended with saving.
- Communication objects continue to be updated and sent if necessary.

When enabling an input, a change of the signal states (as opposed to before the block) leads to immediate processing, e.g.:

- The minimum actuation or detection of a long/short button push starts.
- Communication objects send their current value if necessary.

The communication object Block has no influence on manual operation. The status of the simulated input signal continues to be sent here.

Telegram value: $\quad 0=$ enable input A
$1=$ disable input A

11	MC: counter value	Input A: Counter	Variable DPT variable	C, T

The counter reading of the main counter (MC) can be read out using this communication object.

1 byte value [0...255]
1 byte value [-128...+127]
2 byte value [0...+65,535]
2 byte value [-32,768...+32,767]
4 byte value $[-2,147,483,648 \ldots 2,147,483,647]$ DPT 13.001 counter value

No.	Function	Object name	Data type	Flags
$\mathbf{1 2}$	DC: counter value	Input A: Counter	Variable DPT variable	C, \mathbf{T}

This communication object is enabled if in parameter window A : Counter the parameter Enable differential Counter has been selected with option yes.

The counter reading of the main counter (MC) can be read out using this communication object.

1 byte value [0...255]
1 byte value [-128...+127]
2 byte value [0...+65,.535]
2 byte value $[-32,768 \ldots+32,767]$
4 byte value [-2,147,483,648...2,147,483,647] DPT 13.001 counter value

13	Request counter value	Input A: Counter	1 bit DPT 1.003	C, W

The counter reading can be modified using this communication object.
Telegram value: $\quad \begin{array}{ll}0 & =\text { do not request counter value } \\ 1 & =\text { request counter value }\end{array}$

14	MC: limit value exceeded	Input A: Counter	1 bit DPT 1.002	C, T

With this communication object you can indicate if a limit value of the main counter (MC) has been exceeded

Telegram value: $\quad 1=$ limit value exceeded

15	DC: limit value exceeded	Input A: Counter	1 bit DPT 1.002	C, T

This communication object is enabled if in parameter window A: Counter the parameter Enable differential counter has been selected with the option yes.

With this communication object you can indicate if a limit value of the differential counter (DC) has been exceeded.

Telegram value: $\quad 1=$ limit value exceeded

16	DC: reverse direction	Input A: Counter	1 bit DPT 1.002	C, R, W, T

This communication object is enabled if in parameter window A : Counter the parameter Enable differential Counter has been selected with option yes.

The counting direction of the differential counter (DC) can changed via the bus using this communication object.

Telegram value
$0=$ count direction as parameterized
$1=$ count direction counter to parameterization

No.	Function	Object name	Data type	Flags
17	DC: reset	Input A: Counter	$\begin{aligned} & 1 \text { bit } \\ & \text { DPT } 1.002 \end{aligned}$	C, R, W, T
This communication object is enabled if in parameter window A: Counter the parameter Enable differential Counter has been selected with option yes. The differential counter (DC) can be reset to the start value using this communication object. Telegram value: $0=$ do not reset differential counter value 1 = reset differential counter value				
18	DC: stop	Input A: Counter	1 bit DPT 1.002	C, R, W, T
This communication object is enabled if in parameter window A : Counter the parameter Enable differential Counter has been selected with option yes. The differential counter (DC) can be stopped using this communication object. Telegram value: $0=$ do not stop differential counter value 1 = stop differential counter value				
19				
Not assigned in this operating mode.				

4. Planning and application

In this chapter, you will find descriptions relating to the special characteristics of the switch sensor and blind sensor operating modes.

4.1. Block diagram Switch sensor

This block diagram shows the internal structure of the switch sensor.

4.2. Block diagram Switch/Dim sensor

This block diagram shows the internal structure of the switch/dim sensor.

4.3. Block diagram Blind sensor

This block diagram shows the internal structure of the blind sensor.

4.4. Block diagram Blind sensor with external Blind actuator

This block diagram shows the internal structure of the blind sensor with an external blind actuator.

Parameterization of the binary input x : push button operation
Short operation = STOP/Slat UP
Long operation = Move UP
Parameterization of the binary input y : push button operation
Short operation = STOP/Slat DOWN
Long operation = Move DOWN

4.5. Block diagram Value/Forced operation

This block diagram shows the internal structure for value/forced operation.

4.6. Block diagram Control scene

This block diagram shows the internal structure for the scene control.

4.7. Block diagram Switching sequences

This block diagram shows the internal structure for the switching sequences.

4.8. Block diagram Multiple operation

This block diagram shows the internal structure for multiple operation.

4.9. Block diagram Counter

This block diagram shows the internal structure of the counter.

A Appendix

A. 1 Scope of delivery

The Binary Input is supplied together with the following components.
Please check the items received using the following list.
1 pc. C4-KNX-8BIxxx, Binary Input, 8-fold, MDRC
1 pc. Installation and operating instructions
1 pc. Bus connection terminal (red/black)

A. 2 Input 4 bit dimming telegram:

The following table describes the 4 bit dimming telegram:

Dec.	Hex.	Binary	Dimming telegram
0	0	0000	STOP
1	1	0001	100 \% DARKER
2	2	0010	50 \% DARKER
3	3	0011	25 \% DARKER
4	4	0100	12.5 \% DARKER
5	5	0101	6.25 \% DARKER
6	6	0110	3.13 \% DARKER
7	7	0111	1.56 \% DARKER
8	8	1000	STOP
9	9	1001	100% BRIGHTER
10	A	1010	50% BRIGHTER
11	B	1011	25% BRIGHTER
12	C	1100	12.5% BRIGHTER
13	D	1101	6.25% BRIGHTER
14	E	1110	3.13 \% BRIGHTER
15	F	1111	1.56 \% BRIGHTER

A. 3 Gray code

The sequence of the switching stage is characterized by the fact that there is only a single change of value between two stages. Thus, the transition to the next stage only requires sending a single telegram.
The following table describes Gray code when applied to 4 communication objects:

Switching stage		Value of the communication objects				
No.	Short designation	Value 5	Value 4	Value 3	Value 2	Value 1
0	00000	OFF	OFF	OFF	OFF	OFF
1	00001	OFF	OFF	OFF	OFF	ON
2	00011	OFF	OFF	OFF	ON	ON
3	00010	OFF	OFF	OFF	ON	OFF
4	00110	OFF	OFF	ON	ON	OFF
5	00111	OFF	OFF	ON	ON	ON
6	00101	OFF	OFF	ON	OFF	ON
7	00100	OFF	OFF	ON	OFF	OFF
8	01100	OFF	ON	ON	OFF	OFF
9	01101	OFF	ON	ON	OFF	ON
10	01111	OFF	ON	ON	ON	ON
11	01110	OFF	ON	ON	ON	OFF
12	01010	OFF	ON	OFF	ON	OFF
13	01011	OFF	ON	OFF	ON	ON
14	01001	OFF	ON	OFF	OFF	ON
15	01000	OFF	ON	OFF	OFF	OFF
16	11000	ON	ON	OFF	OFF	OFF
17	11001	ON	ON	OFF	OFF	ON
18	11011	ON	ON	OFF	ON	ON
19	11010	ON	ON	OFF	ON	OFF
20	11110	ON	ON	ON	ON	OFF
21	11111	ON	ON	ON	ON	ON
22	11101	ON	ON	ON	OFF	ON
23	11100	ON	ON	ON	OFF	OFF
24	10100	ON	OFF	ON	OFF	OFF
25	10101	ON	OFF	ON	OFF	ON
26	10111	ON	OFF	ON	ON	ON
27	10110	ON	OFF	ON	ON	OFF
28	10010	ON	OFF	OFF	ON	OFF
29	10011	ON	OFF	OFF	ON	ON
30	10001	ON	OFF	OFF	OFF	ON
31	10000	ON	OFF	OFF	OFF	OFF

A. 4 Code table

Scene (8 bit)

empty = value 0
■ = value 1, applicable

Note

All combinations not listed or indicated are invalid.

A. 5 Ordering Information

Short description	Description	Weight $\mathbf{1}$ pcs [kg]	Packaging [pc.]
C4-KNX-8BICS KNXPROD File Name: BE/S 8.20.2.41	Binary Input, 8-fold, 20 V, MDRC, Contact Scanning	0.2	1
C4-KNX-8BI230V KNXPROD File Name: BE/S 8.230.2.41	Binary Input, 8-fold $230 ~ V ~ A C / D C, ~ M D R C ~$	0.2	1

Notes

-	-	T	,	,	-	,	I		-	T						-		-
-																		
-																		
-																		
-																		
-																		
-																-		
-																-		
-																		
-																		
-																		
-												-				-		
-																-		

Control

Control4.com | 888.400.4070

©2018, Control4 Corporation. All rights reserved. Control4, the Control4 logo, and the 4-ball logo, are registered trademarks or trademarks of Control4 Corporation in the United States and/or other countries. All other names and brands may be claimed as the property of their respective companies. All specifications subject to change without notice.

[^0]: 1 Label carrier
 3 LED Programming
 5 Button Manual operation (2)
 7 Connection terminals
 9 Button Binary input 0

[^1]: Short operation => Event 0
 Long operation => Event 1
 <--- NOTE

